short synthesis
Recently Published Documents


TOTAL DOCUMENTS

1193
(FIVE YEARS 39)

H-INDEX

41
(FIVE YEARS 3)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 521
Author(s):  
Ahmad K. Haidar ◽  
Niels D. Kjeldsen ◽  
Nikolaj S. Troelsen ◽  
Viola Previtali ◽  
Kasper P. Lundquist ◽  
...  

Recent reports of antiepileptic activity of the fungal alkaloid TMC-120B have renewed the interest in this natural product. Previous total syntheses of TMC-120B comprise many steps and have low overall yields (11–17 steps, 1.5–2.9% yield). Thus, to access this compound more efficiently, we herein present a concise and significantly improved total synthesis of the natural product. Our short synthesis relies on two key cyclization steps to assemble the central scaffold: isoquinoline formation via an ethynyl-imino cyclization and an intramolecular Friedel-Crafts reaction to form the furanone.


2021 ◽  
Vol 22 (23) ◽  
pp. 13053
Author(s):  
Timea Magdolna Szabo ◽  
Attila Frigy ◽  
Előd Ernő Nagy

Inflammation has emerged as an important contributor to heart failure (HF) development and progression. Current research data highlight the diversity of immune cells, proteins, and signaling pathways involved in the pathogenesis and perpetuation of heart failure. Chronic inflammation is a major cardiovascular risk factor. Proinflammatory signaling molecules in HF initiate vicious cycles altering mitochondrial function and perturbing calcium homeostasis, therefore affecting myocardial contractility. Specific anti-inflammatory treatment represents a novel approach to prevent and slow HF progression. This review provides an update on the putative roles of inflammatory mediators involved in heart failure (tumor necrosis factor-alpha; interleukin 1, 6, 17, 18, 33) and currently available biological and non-biological therapy options targeting the aforementioned mediators and signaling pathways. We also highlight new treatment approaches based on the latest clinical and experimental research.


ACS Omega ◽  
2021 ◽  
Author(s):  
Raghunath Dey ◽  
Sourav Nayak ◽  
Parthasarathi Das ◽  
Somnath Yadav
Keyword(s):  

2021 ◽  
Author(s):  
Robert F. Lusi ◽  
Goh Sennari ◽  
Richmond Sarpong

<p>Natural product total synthesis inspires strategy development in chemical synthesis. In the 1960s, Corey and coworkers demonstrated a visionary preparation of the terpenoid longifolene, using “strategic bond analysis” to craft a synthesis route. This approach proposes that efficient synthesis routes to bridged, polycyclic, structures should be formulated to introduce the bulk of the target’s topological complexity at a late stage. In subsequent decades, similar strategies have proved general for the syntheses of a wide variety of bridged, polycyclic molecules. Here, we demonstrate that an orthogonal strategy, which utilizes a topologically complex bicyclo[2.2.1] starting material accessed through a scaffold rearrangement of (<i>S</i>)-carvone, leads to a remarkably short synthesis of the longifolene-related terpenoid longiborneol. We also employ a variety of late-stage C–H functionalization tactics in divergent syntheses of many longiborneol congeners. Our strategy should prove effective for the preparation of other topologically complex natural products that contain the bicyclo[2.2.1] framework.</p>


2021 ◽  
Author(s):  
Robert F. Lusi ◽  
Goh Sennari ◽  
Richmond Sarpong

<p>Natural product total synthesis inspires strategy development in chemical synthesis. In the 1960s, Corey and coworkers demonstrated a visionary preparation of the terpenoid longifolene, using “strategic bond analysis” to craft a synthesis route. This approach proposes that efficient synthesis routes to bridged, polycyclic, structures should be formulated to introduce the bulk of the target’s topological complexity at a late stage. In subsequent decades, similar strategies have proved general for the syntheses of a wide variety of bridged, polycyclic molecules. Here, we demonstrate that an orthogonal strategy, which utilizes a topologically complex bicyclo[2.2.1] starting material accessed through a scaffold rearrangement of (<i>S</i>)-carvone, leads to a remarkably short synthesis of the longifolene-related terpenoid longiborneol. We also employ a variety of late-stage C–H functionalization tactics in divergent syntheses of many longiborneol congeners. Our strategy should prove effective for the preparation of other topologically complex natural products that contain the bicyclo[2.2.1] framework.</p>


2021 ◽  
Vol 68 ◽  
pp. 152912
Author(s):  
Florence Charnay-Pouget ◽  
Matthieu Le Liepvre ◽  
Hendrik Eijsberg ◽  
Régis Guillot ◽  
Jean Ollivier ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 23161-23183
Author(s):  
Songsoon Park ◽  
Hyeon-Kyu Lee

Efficient kinetic resolution occurs in ATH of racemic 3-arylindanones using (R,R)-or (S,S)-Ts-DENEB catalyst and HCO2H/Et3N mixture providing near equal yields of cis-3-arylindanols and unreacted 3-arylindanones with excellent stereoselectivities.


Sign in / Sign up

Export Citation Format

Share Document