image representation
Recently Published Documents


TOTAL DOCUMENTS

1248
(FIVE YEARS 238)

H-INDEX

51
(FIVE YEARS 9)

2023 ◽  
Vol 55 (1) ◽  
pp. 1-35
Author(s):  
Shuren Qi ◽  
Yushu Zhang ◽  
Chao Wang ◽  
Jiantao Zhou ◽  
Xiaochun Cao

Image representation is an important topic in computer vision and pattern recognition. It plays a fundamental role in a range of applications toward understanding visual contents. Moment-based image representation has been reported to be effective in satisfying the core conditions of semantic description due to its beneficial mathematical properties, especially geometric invariance and independence. This article presents a comprehensive survey of the orthogonal moments for image representation, covering recent advances in fast/accurate calculation, robustness/invariance optimization, definition extension, and application. We also create a software package for a variety of widely used orthogonal moments and evaluate such methods in a same base. The presented theory analysis, software implementation, and evaluation results can support the community, particularly in developing novel techniques and promoting real-world applications.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Yue Liu ◽  
Junqi Ma ◽  
Xingzhen Tao ◽  
Jingyun Liao ◽  
Tao Wang ◽  
...  

In the era of digital manufacturing, huge amount of image data generated by manufacturing systems cannot be instantly handled to obtain valuable information due to the limitations (e.g., time) of traditional techniques of image processing. In this paper, we propose a novel self-supervised self-attention learning framework—TriLFrame for image representation learning. The TriLFrame is based on the hybrid architecture of Convolutional Network and Transformer. Experiments show that TriLFrame outperforms state-of-the-art self-supervised methods on the ImageNet dataset and achieves competitive performances when transferring learned features on ImageNet to other classification tasks. Moreover, TriLFrame verifies the proposed hybrid architecture, which combines the powerful local convolutional operation and the long-range nonlocal self-attention operation and works effectively in image representation learning tasks.


2022 ◽  
Vol 22 (1&2) ◽  
pp. 17-37
Author(s):  
Xiao Chen ◽  
Zhihao Liu ◽  
Hanwu Chen ◽  
Liang Wang

Quantum image representation has a significant impact in quantum image processing. In this paper, a bit-plane representation for log-polar quantum images (BRLQI) is proposed, which utilizes $(n+4)$ or $(n+6)$ qubits to store and process a grayscale or RGB color image of $2^n$ pixels. Compared to a quantum log-polar image (QUALPI), the storage capacity of BRLQI improves 16 times. Moreover, several quantum operations based on BRLQI are proposed, including color information complement operation, bit-planes reversing operation, bit-planes translation operation and conditional exchange operations between bit-planes. Combining the above operations, we designed an image scrambling circuit suitable for the BRLQI model. Furthermore, comparison results of the scrambling circuits indicate that those operations based on BRLQI have a lower quantum cost than QUALPI. In addition, simulation experiments illustrate that the proposed scrambling algorithm is effective and efficient.


Informatica ◽  
2021 ◽  
Vol 45 (7) ◽  
Author(s):  
Ezekiel Mensah Martey ◽  
Hang Lei ◽  
Xiaoyu Li ◽  
Obed Appiah

2021 ◽  
pp. 1-13
Author(s):  
Yulong Zhang ◽  
Chaofei Zhang ◽  
Jian Tan ◽  
Frank Lim ◽  
Menglan Duan

Deep learning (DL) algorithms, especially the convolutional neural network (CNN), have been proven as a newly developed tool in machinery intelligent diagnosis. However, the current CNN-based fault diagnosis studies usually consider features or images extracted from a single domain as model input. This single domain information may not reflect fault patterns comprehensively, leading to low modeling accuracy and inaccurate diagnostic results. To overcome this limitation, this paper proposes a new CNN-based fault diagnosis approach using image representation considering multi-domain features of vibration signals. First, multi-domain features of vibration signals are extracted. These extracted features are then used to construct a n × n matrix, and subsequently to form images by RGB color transformations. This image transformation technique allows for capturing complementary and rich diagnostic information from multiple domains. At last, these images associated with different mechanical defects are fed into a CNN model that is improved based on the classic LeNet-5 CNN architecture for fault diagnosis and identification. Comparative experiments with the traditional feature extraction methods as well as state-of-the-art CNN-based methods are also investigated. Experimental studies on rolling bearings validate the effectiveness and superiorities of the proposed approach.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guang-Long Chen ◽  
Xian-Hua Song ◽  
Salvador E. Venegas-Andraca ◽  
Ahmed A. Abd El-Latif

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 345
Author(s):  
Van-Cuong Nguyen ◽  
Duy-Tang Hoang ◽  
Xuan-Toa Tran ◽  
Mien Van ◽  
Hee-Jun Kang

Feature extraction from a signal is the most important step in signal-based fault diagnosis. Deep learning or deep neural network (DNN) is an effective method to extract features from signals. In this paper, a novel vibration signal-based bearing fault diagnosis method using DNN is proposed. First, the measured vibration signals are transformed into a new data form called multiple-domain image-representation. By this transformation, the task of signal-based fault diagnosis is transferred into the task of image classification. After that, a DNN with a multi-branch structure is proposed to handle the multiple-domain image representation data. The multi-branch structure of the proposed DNN helps to extract features in multiple domains simultaneously, and to lead to better feature extraction. Better feature extraction leads to a better performance of fault diagnosis. The effectiveness of the proposed method was verified via the experiments conducted with actual bearing fault signals and its comparisons with well-established published methods.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kevin R. Brooks ◽  
Jason Bell ◽  
Lynda G. Boothroyd ◽  
Ian D. Stephen

Sign in / Sign up

Export Citation Format

Share Document