singular surface
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 63 ◽  
pp. 342-358
Author(s):  
Jasobanta Jena ◽  
Sheena Mittal

We investigate the interaction between a singular surface and a strong shock in the self-gravitating interstellar gas clouds with the assumption of spherical symmetry. Using the method of the Lie group of transformations, a particular solution of the flow variables and the cooling–heating function for an infinitely strong shock is obtained. This paper explores an application of the singular surface theory in the evolution of an acceleration wave front propagating through an unperturbed medium. We discuss the formation of an acceleration, considering the cases of compression and expansion waves. The influence of the cooling–heating function on a shock formation is explained. The results of a collision between a strong shock and an acceleration wave are discussed using the Lax evolutionary conditions.   doi:10.1017/S1446181121000328


2021 ◽  
pp. 1-17
Author(s):  
J. JENA ◽  
S. MITTAL

Abstract We investigate the interaction between a singular surface and a strong shock in the self-gravitating interstellar gas clouds with the assumption of spherical symmetry. Using the method of the Lie group of transformations, a particular solution of the flow variables and the cooling–heating function for an infinitely strong shock is obtained. This paper explores an application of the singular surface theory in the evolution of an acceleration wave front propagating through an unperturbed medium. We discuss the formation of an acceleration, considering the cases of compression and expansion waves. The influence of the cooling–heating function on a shock formation is explained. The results of a collision between a strong shock and an acceleration wave are discussed using the Lax evolutionary conditions.


2020 ◽  
Vol 75 (2) ◽  
pp. 119-129 ◽  
Author(s):  
Sheena Mittal ◽  
Jasobanta Jena

AbstractA system of hyperbolic differential equations outlining one-dimensional planar, cylindrical symmetric and spherical symmetric flow of a relaxing gas with dust particles is considered. Singular surface theory used to study different aspects of wave propagation and its culmination to the steepened form. The evolutionary behavior of the characteristic shock is studied. A particular solution of the governing system of equations is used to discuss the steepened wave form, characteristic shock and their interaction. The results of the interaction between the steepened wave front and the characteristic shock using the general theory of wave interaction are discussed. Also, the influence of relaxation and dust parameters on the steepened wave front, the formation of a characteristic shock, reflected and transmitted waves after interaction and a jump in shock acceleration are investigated.


2019 ◽  
Vol 32 (5) ◽  
pp. 1417-1434
Author(s):  
Andreas Prahs ◽  
Thomas Böhlke

2019 ◽  
Vol 19 (3) ◽  
pp. 389-399
Author(s):  
P. Benedini Riul ◽  
R. Oset Sinha

Abstract At each point in an immersed surface in ℝ4 there is a curvature ellipse in the normal plane which codifies all the local second order geometry of the surface. Recently, at the singular point of a corank 1 singular surface in ℝ3, a curvature parabola in the normal plane which codifies all the local second order geometry has been defined. When projecting a regular surface in ℝ4 to ℝ3 in a tangent direction, corank 1 singularities appear generically. The projection has a cross-cap singularity unless the direction of projection is asymptotic, where more degenerate singularities can appear. In this paper we relate the geometry of an immersed surface in ℝ4 at a certain point to the geometry of the projection of the surface to ℝ3 at the singular point. In particular we relate the curvature ellipse of the surface to the curvature parabola of its singular projection.


Sign in / Sign up

Export Citation Format

Share Document