medium viscosity
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
Diba Grace Auliya ◽  
Soni Setiadji ◽  
Fitrilawati Fitrilawati ◽  
Risdiana Risdiana

Polydimethylsiloxane (PDMS) is one of the most superior materials and has been used as a substitute for vitreous humor in the human eye. In previous research, we have succeeded in producing PDMS with low and medium viscosity using octamethylcyclotetrasiloxane (D4) monomer with a low grade of 96%. Both have good physical properties and are comparable to commercial product PDMS and PDMS synthesized using D4 monomer with a high grade of 98%. An improvement of the synthesis process is needed to ensure that PDMS synthesized from a low-grade D4 monomer under specific synthesis conditions can repeatedly produce high-quality PDMS. Apart from good physical properties, the PDMS as a substitute for vitreous humor must also be safe and not cause other disturbances to the eyes. Here, we reported the process of synthesizing and characterizing the physical properties of low- and medium-viscosity PDMS using a low-grade D4 monomer. We also reported for the first time the in vitro toxicity test using the Hen’s Egg Test Chorioallantoic Membrane (HET-CAM) test method. We have succeeded in obtaining PDMS with viscosities of 1.15 Pa.s, 1.17 Pa.s, and 1.81 Pa.s. All samples have good physical properties such as refractive index, surface tension, and functional groups that are similar to commercial PDMS. The HET-CAM test results showed that all samples did not show signs of irritation indicating that samples were non-toxic. From the results of this study, it can be concluded that PDMS synthesized from a low-grade D4 monomer under specific synthesis conditions by the ROP method is very safe and has the potential to be developed as a substitute for vitreous humor in human eyes.


2021 ◽  
Vol 7 (27) ◽  
pp. eabf8467
Author(s):  
Mythreyi Unni ◽  
Shehaab Savliwala ◽  
Brittany D. Partain ◽  
Lorena Maldonado-Camargo ◽  
Qingteng Zhang ◽  
...  

Nanoparticles are under investigation as diagnostic and therapeutic agents for joint diseases, such as osteoarthritis. However, there is incomplete understanding of nanoparticle diffusion in synovial fluid, the fluid inside the joint, which consists of a mixture of the polyelectrolyte hyaluronic acid, proteins, and other components. Here, we show that rotational and translational diffusion of polymer-coated nanoparticles in quiescent synovial fluid and in hyaluronic acid solutions is well described by the Stokes-Einstein relationship, albeit with an effective medium viscosity that is much smaller than the macroscopic low shear viscosity of the fluid. This effective medium viscosity is well described by an equation for the viscosity of dilute polymer chains, where the additional viscous dissipation arises because of the presence of the polymer segments. These results shed light on the diffusive behavior of polymer-coated inorganic nanoparticles in complex and crowded biological environments, such as in the joint.


2021 ◽  
Vol 1028 ◽  
pp. 346-351
Author(s):  
Soni Setiadji ◽  
Zulfi Mofa Agasa ◽  
Diba G Auliya ◽  
Fitrilawati ◽  
Norman Syakir ◽  
...  

Duration of use and injectability are external factors for Polydimethylsiloxane (PDMS) that needs to be considered when PDMS utilized as a vitreous substituted liquid in vitreoretinal surgery. In general, PDMS which has been used as a substitute for vitreous humour is PDMS with a low viscosity in the value about 1000 cSt and a high viscosity at a value of about 5000 cSt. Various deficiencies have been encountered from low and high viscosity of PDMS, causing research to be continued to obtain PDMS which has suitable properties as a substitute for vitreous humour. One of them is research to obtain medium viscosity of PDMS with a viscosity value of about 2000 cSt. Here, we reported synthesis and characterization of PDMS with medium viscosity in ranges from 1800 to 2600 mPas. PDMS was synthesized through Ring-Opening Polymerization (ROP) pathway using the monomer of Octamethylcyclotetrasiloxane (D4) and the chain terminator of Hexamethyldisiloxane (MM). Various concentrations of potassium hydroxide (KOH) of 3, 4, 6 and 8 %(w/v) were applied as initiator to form gel of PDMS. All synthesized PDMS samples were identified to have viscosity values of 1800-2600 mPas, refractive index values of 1.4042-1.4044 and surface tension values of 22-23 mN/m. Meanwhile, the results of Fourier-Transform Infrared (FTIR) measurement showed that the absorption peaks were similar to that of our previous report.


2020 ◽  
Vol 55 (8) ◽  
pp. 974-983
Author(s):  
Aldcejam Martins Fonseca Junior ◽  
Vincenzo Gaita ◽  
Daniel Ricardo Argumedo ◽  
Leticia Signori Castro ◽  
João Diego de Agostini Losano ◽  
...  

2020 ◽  
Vol 18 (2-3) ◽  
pp. 150-162
Author(s):  
Pranav Madhikar ◽  
Jan Åström ◽  
Jan Westerholm ◽  
Björn Baumeier ◽  
Mikko Karttunen

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1202 ◽  
Author(s):  
Adriana M. Osorio ◽  
Moisés O. Bustamante ◽  
Gloria M. Restrepo ◽  
Manuel M. M. López ◽  
Juan M. Menéndez-Aguado

The rheological behavior of mineral slurries shows the level of interaction or aggregation among particles, being a process control variable in processes such as slurry transportation, dehydration, and wet grinding systems. With the aim to analyze the effect of medium viscosity in wet grinding, a series of monosize grinding ball mill tests were performed to determine breakage parameters, according to the generally accepted kinetic approach of grinding processes. A rheological modifier (polyacrylamide, PAM) was used to modify solutions viscosity. A model was proposed by means of dimensional analysis (Buckingham’s Pi theorem) in order to determine the behavior of the specific breakage rate (Sj) for a ball grinding process in terms of the rheology of the system. In addition to this, a linear adjustment was established for the relationship between specific breakage rates with and without PAM addition, based on the reduced viscosity, μr. Furthermore, within a certain interval of viscosity, it was proved that an increment of viscosity can increase the specific breakage rate, and consequently the grinding degree.


2019 ◽  
Vol 878 ◽  
pp. 324-355 ◽  
Author(s):  
Jacob R. Gissinger ◽  
Alexander Z. Zinchenko ◽  
Robert H. Davis

The interfacial behaviour of surfactant-laden drops squeezing through tight constrictions in a uniform far-field flow is modelled with respect to capillary number, drop-to-medium viscosity ratio and surfactant contamination. The surfactant is treated as insoluble and non-diffusive, and drop surface tension is related to surfactant concentration by a linear equation of state. The constriction is formed by three solid spheres held rigidly in space. A characteristic aspect of this confined and contaminated multiphase system is the rapid development of steep surfactant-concentration gradients during the onset of drop squeezing. The interplay between two physical effects of surfactant, namely the greater interface deformability due to decreased surface tension and interface immobilization due to Marangoni stresses, results in particularly rich drop-squeezing dynamics. A three-dimensional boundary-integral algorithm is used to describe drop hydrodynamics, and accurate treatment of close squeezing and trapped states is enabled by advanced singularity subtraction techniques. Surfactant transport and hydrodynamics are coupled via the surface convection equation (or convection–diffusion equation, if artificial diffusion is included), the interfacial stress balance and a solid-particle contribution based on the Hebeker representation. For extreme conditions, such as drop-to-medium viscosity ratios significantly less than unity, it is found that upwind-biased methods are the only stable approaches for modelling surfactant transport. Two distinct schemes, upwind finite volume and flow-biased least squares, are found to provide results in close agreement, indicating negligible numerical diffusion. Surfactant transport is enhanced by low drop-to-medium viscosity ratios, at which extremely sharp concentration gradients form during various stages of the squeezing process. The presence of surfactant, even at low degrees of contamination, significantly decreases the critical capillary number for droplet trapping, due to the accumulation of surfactant at the downwind pole of the drop and its subsequent elongation. Increasing the degree of contamination significantly affects surface mobility and further decreases the critical capillary number as well as drop squeezing times, up to a threshold above which the addition of surfactant negligibly affects squeezing dynamics.


Sign in / Sign up

Export Citation Format

Share Document