independent motion
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
Carsten Steger ◽  
Markus Ulrich

AbstractWe propose a novel multi-view camera model for line-scan cameras with telecentric lenses. The camera model supports an arbitrary number of cameras and assumes a linear relative motion with constant velocity between the cameras and the object. We distinguish two motion configurations. In the first configuration, all cameras move with independent motion vectors. In the second configuration, the cameras are mounted rigidly with respect to each other and therefore share a common motion vector. The camera model can model arbitrary lens distortions by supporting arbitrary positions of the line sensor with respect to the optical axis. We propose an algorithm to calibrate a multi-view telecentric line-scan camera setup. To facilitate a 3D reconstruction, we prove that an image pair acquired with two telecentric line-scan cameras can always be rectified to the epipolar standard configuration, in contrast to line-scan cameras with entocentric lenses, for which this is possible only under very restricted conditions. The rectification allows an arbitrary stereo algorithm to be used to calculate disparity images. We propose an efficient algorithm to compute 3D coordinates from these disparities. Experiments on real images show the validity of the proposed multi-view telecentric line-scan camera model.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3755
Author(s):  
Juan Medina-Lee ◽  
Antonio Artuñedo ◽  
Jorge Godoy ◽  
Jorge Villagra

Safe and adaptable motion planning for autonomous vehicles remains an open problem in urban environments, where the variability of situations and behaviors may become intractable using rule-based approaches. This work proposes a use-case-independent motion planning algorithm that generates a set of possible trajectories and selects the best of them according to a merit function that combines longitudinal comfort, lateral comfort, safety and utility criteria. The system was tested in urban scenarios on simulated and real environments, and the results show that different driving styles can be achieved according to the priorities set in the merit function, always meeting safety and comfort parameters imposed by design.


2021 ◽  
Author(s):  
Kai Li ◽  
Yingchao Wang ◽  
Xin Chen ◽  
Sun Bin ◽  
Yuxin Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhengkui Weng ◽  
Zhipeng Jin ◽  
Shuangxi Chen ◽  
Quanquan Shen ◽  
Xiangyang Ren ◽  
...  

Convolutional neural network (CNN) has been leaping forward in recent years. However, the high dimensionality, rich human dynamic characteristics, and various kinds of background interference increase difficulty for traditional CNNs in capturing complicated motion data in videos. A novel framework named the attention-based temporal encoding network (ATEN) with background-independent motion mask (BIMM) is proposed to achieve video action recognition here. Initially, we introduce one motion segmenting approach on the basis of boundary prior by associating with the minimal geodesic distance inside a weighted graph that is not directed. Then, we propose one dynamic contrast segmenting strategic procedure for segmenting the object that moves within complicated environments. Subsequently, we build the BIMM for enhancing the object that moves based on the suppression of the not relevant background inside the respective frame. Furthermore, we design one long-range attention system inside ATEN, capable of effectively remedying the dependency of sophisticated actions that are not periodic in a long term based on the more automatic focus on the semantical vital frames other than the equal process for overall sampled frames. For this reason, the attention mechanism is capable of suppressing the temporal redundancy and highlighting the discriminative frames. Lastly, the framework is assessed by using HMDB51 and UCF101 datasets. As revealed from the experimentally achieved results, our ATEN with BIMM gains 94.5% and 70.6% accuracy, respectively, which outperforms a number of existing methods on both datasets.


2021 ◽  
Author(s):  
Justin Tonti-Filippini ◽  
Boris Robert ◽  
Élodie Muller ◽  
Michael Wack ◽  
Xixi Zhao ◽  
...  

<p>The paleomagnetic record during the middle Neoproterozoic (~825-780 Ma) displays rapid apparent polar wander variations leading to large discrepancies in paleogeographic reconstructions. Some authors propose that these data may represent true polar wander events, which correspond to independent motion of the mantle and lithosphere with respect to Earth’s rotation axis. An alternative explanation might be a perturbation of the geomagnetic field, such as a deviation from a predominantly dipole field or a hyper-reversing field. To test these hypotheses, we sampled 1200 oriented cores over a stratigraphic height of 100 metres in sedimentary rocks of the 820-810 Ma Laoshanya Formation in South China. We will present preliminary paleomagnetic and rock magnetic analyses together with results of petrologic and geochemical experiments to better understand the origin of the paleomagnetic signal.</p>


2020 ◽  
Author(s):  
Bruce A. MacWilliams ◽  
Mark L. McMulkin ◽  
Adam Rozumalski ◽  
Michael H. Schwartz

AbstractAimThe dynamic motor control index during walking (walk-DMC) has been shown to be related to patient outcomes and there has been an increasing interest from motion analysis centers regarding using this metric in their own practice. However, the methods for computing the index reported in the literature are not consistent. Here we propose a standardized method and investigate if this leads to results that are consistent between laboratories.MethodComparisons of typically developing controls are made between three independent motion analysis centers. Comparisons are also made between the proposed and previously published methods. A program script to compute the walk-DMC was used for this study and is made freely available with this manuscript.ResultsUsing this script, results are highly consistent between three participating centers. The currently proposed method results in a wider distribution of walk-DMC values than those previously reported.InterpretationUsing consistent processing methods, synergy measures are equivalent between centers. The major differences between current and published data are attributed to the use of concatenation of several walking trials.


2020 ◽  
Author(s):  
Michael King ◽  
Kim Welford ◽  
Alexander Peace

<p>The tectonic evolution of the southern North Atlantic is a subject of increasing interest due to its continental margins playing host to several world-class frontier regions for oil and gas exploration. The Newfoundland-Iberia conjugate margin pair serves as one of the best studied non-volcanic rifted conjugate margin pairs in the world, and is a topic of constant scientific debate due to its complex plate kinematic history and geological evolution.  Recent adaptability of the GPlates freely available plate tectonic reconstruction software provides an excellent tool for gaining insight into complex plate kinematic problems. The ability to account for regions of deformation, integration of various geological and geophysical datasets, and the ability to calculate temporal variations in crustal thickness, strain rates, and velocity vectors provide an optimal environment for solving crustal-scale geological and geophysical problems. Building upon previous rigid and deformable plate tectonic modelling studies, the aim of this work is to create deformable plate tectonic models of Iberia with emphasis on the West Iberian margin and the Pyrenees to assess Iberia’s evolution during the formation of the southern North Atlantic from 200 Ma to present day. A comparison of crustal thickness results calculated from GPlates models with those obtained from gravity inversion, passive and controlled source seismology, and geological field mapping, provided a good metric for investigating the plate kinematics of Iberia and assessing previous discrepancies when considering the crustal evolution of the West Iberian margin and the Pyrenees as an integrated plate kinematic system. Results from the GPlates models produced in this study also demonstrate the significance of continental fragments and their independent motion during rifting. In particular, we investigate the independent motion of the Galicia Bank and its role with respect to the deformation experienced within the Galicia Interior Basin and the role of the Ebro Block and Landes High during deformation prior to the Pyrenean Orogeny. In addition, this study highlights the importance of inherited structures with respect to the styles of deformation experienced during rifting of continental crust. Preliminary deformable plate modeling results of the West Iberian margin indicate that the independent motion of the Galicia Bank and its interplay with inherited structures is crucial for deriving the amount of deformation inferred by gravity inversion and regional seismic studies within the Galicia Interior Basin.</p>


2018 ◽  
Vol 31 (3-4) ◽  
pp. 251-272 ◽  
Author(s):  
Eugenie Roudaia ◽  
Finnegan J. Calabro ◽  
Lucia M. Vaina ◽  
Fiona N. Newell

The presence of a moving sound has been shown to facilitate the detection of an independently moving visual target embedded among an array of identical moving objects simulating forward self-motion (Calabro et al., Proc. R. Soc. B, 2011). Given that the perception of object motion within self-motion declines with aging, we investigated whether older adults can also benefit from the presence of a congruent dynamic sound when detecting object motion within self-motion. Visual stimuli consisted of nine identical spheres randomly distributed inside a virtual rectangular prism. For 1 s, all the spheres expanded outward simulating forward observer translation at a constant speed. One of the spheres (the target) had independent motion either approaching or moving away from the observer at three different speeds. In the visual condition, stimuli contained no sound. In the audiovisual condition, the visual stimulus was accompanied by a broadband noise sound co-localized with the target, whose loudness increased or decreased congruent with the target’s direction. Participants reported which of the spheres had independent motion. Younger participants showed higher target detection accuracy in the audiovisual compared to the visual condition at the slowest speed level. Older participants showed overall poorer target detection accuracy than the younger participants, but the presence of the sound had no effect on older participants’ target detection accuracy at either speed level. These results indicate that aging may impair cross-modal integration in some contexts. Potential reasons for the absence of auditory facilitation in older adults are discussed.


Sign in / Sign up

Export Citation Format

Share Document