conjugated bile acids
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 22)

H-INDEX

37
(FIVE YEARS 4)

Author(s):  
Xiaoyun Yang ◽  
Wenhui Jiang ◽  
Jingli Cheng ◽  
Jintong Hao ◽  
Fei Han ◽  
...  

Abstract Background The pathogenesis of spontaneously diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, among the best models for human type 2 diabetes mellitus (T2DM), remains poorly defined. Therefore, we investigated the dynamic changes in taurine-conjugated bile acids (T-BAs) and intestinal microbiota during T2DM development in OLETF rats. Methods OLETF rats and corresponding diabetes-resistant Long Evans Tokushima Otsuka (LETO) rats were fed a normal baseline diet. The progress of T2DM was divided into four phases, including normal glycemia-normal insulinemia (baseline), normal glycemia-hyperinsulinemia, impaired glucose tolerance, and DM. Body weight, liver function, blood lipids, fasting plasma glucose, fasting plasma insulin, fasting plasma glucagon-like peptide (GLP)-1 and GLP-2, serum and fecal T-BAs, and gut microbiota were analyzed during the entire course of T2DM development. Results There were reductions in fecal T-BAs and short-chain fatty acids (SCFAs)-producing bacteria including Phascolarctobacterium and Lactobacillus in OLETF rats compared with those in LETO rats at baseline, and low levels of fecal T-BAs and SCFAs-producing bacteria were maintained throughout the whole course of the development of T2DM among OLETF rats compared with those in corresponding age-matched LETO rats. Fecal taurine-conjugated chenodeoxycholic acid correlated positively with Phascolarctobacterium. Fecal taurine-conjugated deoxycholic acid correlated positively with Lactobacillus and fasting plasma GLP-1 and inversely with fasting plasma glucose. Conclusion The fecal BAs profiles and microbiota structure among OLETF rats were different from those of LETO rats during the entire course of T2DM development, indicating that reductions in intestinal T-BAs and specific SCFA-producing bacteria may be potential mechanisms of T2DM in OLETF rats.


2021 ◽  
Author(s):  
Pieter Dorrestein ◽  
Emily Gentry ◽  
Stephanie Collins ◽  
Morgan Panitchpakdi ◽  
Pedro Belda-Ferre ◽  
...  

Abstract Identification of metabolites in humans remains challenging. Here, we present synthesis-based reverse metabolomics as a strategy for structure elucidation that aims to also find phenotypic associations. In this approach, MS/MS spectra are acquired from newly synthesized compounds, and searched against public metabolomics data to uncover their phenotypic associations. To demonstrate the concept, we used combinatorial amide coupling reactions to synthesize an array of amino acid conjugated bile acids. A total of 16,587 spectral matches were found for 145 amidates synthesized, representing the single largest expansion of structures in the 170+ year history of bile acids. Furthermore, some new bile acids were associated with health-related phenotypes such as inflammatory bowel diseases and obesity. Using independent human cohorts for validation revealed that some cholic and chenodeoxycholic acid conjugates were elevated in Crohn’s disease, of which some were also potent PXR agonists. Bacteria belonging to bifidobacterium, clostridium, and enterococci genera were the main producers of these new conjugated bile acids. Because searching repositories with MS/MS spectra has only recently become possible, this synthesis-based reverse metabolomics approach can now be employed as a general strategy to elucidate structures and discover other new molecules from human and animal ecosystems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Barbara Hutka ◽  
Bernadette Lázár ◽  
András S. Tóth ◽  
Bence Ágg ◽  
Szilvia B. László ◽  
...  

Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) induce significant damage to the small intestine, which is accompanied by changes in intestinal bacteria (dysbiosis) and bile acids. However, it is still a question of debate whether besides mucosal inflammation also other factors, such as direct antibacterial effects or delayed peristalsis, contribute to NSAID-induced dysbiosis. Here we aimed to assess whether ketorolac, an NSAID lacking direct effects on gut bacteria, has any significant impact on intestinal microbiota and bile acids in the absence of mucosal inflammation. We also addressed the possibility that ketorolac-induced bacterial and bile acid alterations are due to a delay in gastrointestinal (GI) transit.Methods: Vehicle or ketorolac (1, 3 and 10 mg/kg) were given to rats by oral gavage once daily for four weeks, and the severity of mucosal inflammation was evaluated macroscopically, histologically, and by measuring the levels of inflammatory proteins and claudin-1 in the distal jejunal tissue. The luminal amount of bile acids was measured by liquid chromatography-tandem mass spectrometry, whereas the composition of microbiota by sequencing of bacterial 16S rRNA. GI transit was assessed by the charcoal meal method.Results: Ketorolac up to 3 mg/kg did not cause any signs of mucosal damage to the small intestine. However, 3 mg/kg of ketorolac induced dysbiosis, which was characterized by a loss of families belonging to Firmicutes (Paenibacillaceae, Clostridiales Family XIII, Christensenellaceae) and bloom of Enterobacteriaceae. Ketorolac also changed the composition of small intestinal bile by decreasing the concentration of conjugated bile acids and by increasing the amount of hyodeoxycholic acid (HDCA). The level of conjugated bile acids correlated negatively with the abundance of Erysipelotrichaceae, Ruminococcaceae, Clostridiaceae 1, Muribaculaceae, Bacteroidaceae, Burkholderiaceae and Bifidobacteriaceae. Ketorolac, under the present experimental conditions, did not change the GI transit.Conclusion: This is the first demonstration that low-dose ketorolac disturbed the delicate balance between small intestinal bacteria and bile acids, despite having no significant effect on intestinal mucosal integrity and peristalsis. Other, yet unidentified, factors may contribute to ketorolac-induced dysbiosis and bile dysmetabolism.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 626
Author(s):  
Cassandra Warden ◽  
Milam A. Brantley

We previously demonstrated that the bile acid taurocholic acid (TCA) inhibits features of age-related macular degeneration (AMD) in vitro. The purpose of this study was to determine if the glycine-conjugated bile acids glycocholic acid (GCA), glycodeoxycholic acid (GDCA), and glycoursodeoxycholic acid (GUDCA) can protect retinal pigment epithelial (RPE) cells against oxidative damage and inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis in choroidal endothelial cells (CECs). Paraquat was used to induce oxidative stress and disrupt tight junctions in HRPEpiC primary human RPE cells. Tight junctions were assessed via transepithelial electrical resistance and ZO-1 immunofluorescence. GCA and GUDCA protected RPE tight junctions against oxidative damage at concentrations of 100–500 µM, and GDCA protected tight junctions at 10–500 µM. Angiogenesis was induced with VEGF in RF/6A macaque CECs and evaluated with cell proliferation, cell migration, and tube formation assays. GCA inhibited VEGF-induced CEC migration at 50–500 µM and tube formation at 10–500 µM. GUDCA inhibited VEGF-induced CEC migration at 100–500 µM and tube formation at 50–500 µM. GDCA had no effect on VEGF-induced angiogenesis. None of the three bile acids significantly inhibited VEGF-induced CEC proliferation. These results suggest glycine-conjugated bile acids may be protective against both atrophic and neovascular AMD.


2020 ◽  
Author(s):  
Ann Morgell ◽  
Julie A. Reisz ◽  
Zeeshan Ateeb ◽  
Haleh Davanian ◽  
Susanne E. Reinsbach ◽  
...  

AbstractPancreatic cancer is the seventh leading cause of cancer-related death worldwide, with a 5-year survival rate as low as 9%. One factor complicating the management of pancreatic cancer is the lack of reliable tools for early diagnosis. While up to 50% of the adult population has been shown to develop precancerous pancreatic cysts, limited and insufficient approaches are currently available to determine whether a cyst is going to progress into pancreatic cancer. Recently, we used metabolomics approaches to identify candidate markers of disease progression in patients diagnosed with intraductal papillary mucinous neoplasms (IPMNs) undergoing pancreatic resection. Here we enrolled an independent cohort to verify the candidate markers from our previous study with orthogonal quantitative methods in plasma and cyst fluid from serous cystic neoplasm and IPMN (either low- or high-grade dysplasia or pancreatic ductal adenocarcinoma). We thus validated these markers with absolute quantitative methods through the auxilium of stable isotope-labelled internal standards in a new independent cohort. Finally, we identified novel markers of IPMN status and disease progression – including amino acids, carboxylic acids, conjugated bile acids, free and carnitine-conjugated fatty acids, purine oxidation products and TMAO. We show that the levels of these metabolites of potential bacterial origin correlated with the degree of bacterial enrichment in the cyst, as determined by 16S RNA. Overall, our findings are interesting per se, owing to the validation of previous markers and identification of novel small molecule signatures of IPMN and disease progression. In addition, our findings further fuel the provoking debate as to whether bacterial infections may represent an etiological contributor to the development and severity of the disease in pancreatic cancer, in like fashion to other cancers (e.g., Helicobacter pylori and gastric cancer).Key pointsWe identified and quantified novel markers of IPMN cyst status and pancreatic cancer disease progression – including amino acids, carboxylic acids, conjugated bile acids, free and carnitine-conjugated fatty acids, purine oxidation products and TMAO.We show that the levels of these metabolites of potential bacterial origin correlated with the degree of bacterial enrichment in the cyst, as determined by 16S RNA.


Gut ◽  
2020 ◽  
pp. gutjnl-2020-321757 ◽  
Author(s):  
Song-Yang Zhang ◽  
Rosa J W Li ◽  
Yu-Mi Lim ◽  
Battsetseg Batchuluun ◽  
Huiying Liu ◽  
...  

ObjectiveConjugated bile acids are metabolised by upper small intestinal microbiota, and serum levels of taurine-conjugated bile acids are elevated and correlated with insulin resistance in people with type 2 diabetes. However, whether changes in taurine-conjugated bile acids are necessary for small intestinal microbiome to alter insulin action remain unknown.DesignWe evaluated circulating and specifically brain insulin action using the pancreatic-euglycaemic clamps in high-fat (HF) versus chow fed rats with or without upper small intestinal healthy microbiome transplant. Chemical and molecular gain/loss-of-function experiments targeting specific taurine-conjugated bile acid-induced changes of farnesoid X receptor (FXR) in the brain were performed in parallel.ResultsWe found that short-term HF feeding increased the levels of taurochenodeoxycholic acid (TCDCA, an FXR ligand) in the upper small intestine, ileum, plasma and dorsal vagal complex (DVC) of the brain. Transplantation of upper small intestinal healthy microbiome into the upper small intestine of HF rats not only reversed the rise of TCDCA in all reported tissues but also enhanced the ability of either circulating hyperinsulinaemia or DVC insulin action to lower glucose production. Further, DVC infusion of TCDCA or FXR agonist negated the enhancement of insulin action, while genetic knockdown or chemical inhibition of FXR in the DVC of HF rats reversed insulin resistance.ConclusionOur findings indicate that FXR in the DVC is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats, and highlight a previously unappreciated TCDCA-FXR axis linking gut microbiome and host insulin action.


Sign in / Sign up

Export Citation Format

Share Document