anion exchange membrane
Recently Published Documents


TOTAL DOCUMENTS

1512
(FIVE YEARS 574)

H-INDEX

72
(FIVE YEARS 21)

Author(s):  
Anupam Das ◽  
Balakondareddy Sana ◽  
Rama Bhattacharyya ◽  
Prakash Chandra Ghosh ◽  
Tushar Jana

Author(s):  
CHUAN HU ◽  
Ho Hyun Wang ◽  
Jonghyeong Park ◽  
Haemin Kim ◽  
Nanjun Chen ◽  
...  

Abstract We systematically study anion exchange membrane fuel cells (AEMFCs) based on poly(aryl-co-aryl piperidinium) (c-PAP) copolymers and provide a scalable scenario for high-performance AEMFCs, covering the optimization of the relative humidity (RH), catalyst species, catalyst interfaces, and hydrophobic treatment. Specifically, high-water-permeable c-PAP ionomers in the presence of moderate relative humidity (RH) (75%/100%) can be used to address anode flooding and cathode dry-out issues. The composition of the catalyst layer and the anode hydrophobic treatment significantly impact the power density of AEMFCs. c-PAP-based AEMFCs with optimum catalyst composition achieve a peak power density (PPD) of 2.70 W cm-2 at 80 oC in H2-O2 after hydrophobic treatment. Pt1Co1/C cathode-based AEMFCs reach a PPD of 1.80 W cm-2 along with an outstanding specific power of 13.87 W mg-1. Moreover, these AEMFCs can be operated under a 0.2 A cm-2 current density at 60 oC for over 300 h with a voltage decay rate of ~300 μv h-1.


Author(s):  
Anton Kozmai ◽  
Natalia Pismenskaya ◽  
Victor Nikonenko

Ion-exchange membranes (IEMs) are widely used in desalination, waste water treatment, food, energy production and other applications. There is a strong demand for cost-effective IEMs characterized by high selective transport of ions of a certain sign of charge. In this paper, we simulate the experimental results of V. Sarapulova et al. (IJMS 2021) on the modification of an inexpensive anion-exchange membrane (CJMA-7, Hefei Chemjoy Polymer Materials Co. Ltd., China) with a perfluorosulfonated ionomer (PFSI). The modification was made in several stages including keeping the membrane at a low temperature, applying a PFSI solution on its surface, and subsequent drying it at an elevated temperature. We apply the known microheterogeneous model with some new amendments to simulate each stage of the membrane modification. It has been shown that the PFSI film formed on the membrane-substrate does not affect significantly its properties due to the small thickness of the film (4 m) and similar properties of the film and substrate. The main effect is caused by the fact that PFSI material “clogs” the macropores of the CJMA-7 membrane, thereby blocking the transport of coions through the membrane. In this case, the membrane microporous gel phase, which has a high selectivity to counterions, remains the primary pathway for both counterions and coions. Due to the above modification of the CJMA-7 membrane, the coion (Na+) transport number in the membrane equilibrated with 1 M NaCl solution decreased from 0.11 to 0.03. Thus, the modified membrane becomes comparable in its transport characteristics with more expensive IEMs available on the market.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 74
Author(s):  
Tar-Hwa Hsieh ◽  
Sin-Nan Chen ◽  
Yen-Zen Wang ◽  
Ko-Shan Ho ◽  
Jung-Kuan Chuang ◽  
...  

Cobalt-doped carbon nitride frameworks (CoNC) were prepared from the calcination of Co-chelated aromatic polyimines (APIM) synthesized from stepwise polymerization of p-phenylene diamine (PDA) and o-phthalaldehyde (OPAl) via Schiff base reactions in the presence of cobalt (II) chloride. The Co-chelated APIM (Co-APIM) precursor converted to CoNC after calcination in two-step heating with the second step performed at 100 °C lower than the first one. The CoNCs demonstrated that its Co, N-co-doped carbonaceous framework contained both graphene and carbon nanotube, as characterized by X-ray diffraction pattern, Raman spectra, and TEM micropictures. CoNCs also revealed a significant ORR peak in the current–voltage polarization cycle and a higher O2 reduction current than that of commercial Pt/C in a linear scanning voltage test in O2-saturated KOH(aq). The calculated e-transferred number even reaches 3.94 in KOH(aq) for the CoNC1000A900 cathode catalyst, which has the highest BET surface area of 393.94 m2 g−1. Single cells of anion exchange membrane fuel cells (AEMFCs) are fabricated using different CoNCs as the cathode catalysts, and CoNC1000A900 demonstrates a peak power density of 374.3 compared to the 334.7 mW cm−2 obtained from the single cell using Pt/C as the cathode catalyst.


2022 ◽  
pp. 2102063
Author(s):  
Deok‐Hye Park ◽  
Min‐Ha Kim ◽  
Hak‐Joo Lee ◽  
Woo‐Jun Lee ◽  
Jeong‐Hyeon Byeon ◽  
...  

2022 ◽  
pp. 139812
Author(s):  
Ashutosh G. Divekar ◽  
Michael R. Gerhardt ◽  
Christopher M. Antunes ◽  
Luigi Osmieri ◽  
Ami C. Yang-Neyerlin ◽  
...  

Author(s):  
Sungjun Kim ◽  
Chi‐Yeong Ahn ◽  
Mohanraju Karuppannan ◽  
Yung‐Eun Sung ◽  
Oh Joong Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document