cell penetrating
Recently Published Documents


TOTAL DOCUMENTS

2729
(FIVE YEARS 673)

H-INDEX

119
(FIVE YEARS 16)

2022 ◽  
Vol 26 ◽  
pp. 101351
Author(s):  
Wenbo Geng ◽  
Maowen Chen ◽  
Bailong Tao ◽  
Rong Wang ◽  
Dong Wang ◽  
...  

Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 88
Author(s):  
Betty Revon Liu ◽  
Shiow-Her Chiou ◽  
Yue-Wern Huang ◽  
Han-Jung Lee

Recently, membrane-active peptides or proteins that include antimicrobial peptides (AMPs), cytolytic proteins, and cell-penetrating peptides (CPPs) have attracted attention due to their potential applications in the biomedical field. Among them, CPPs have been regarded as a potent drug/molecules delivery system. Various cargoes, such as DNAs, RNAs, bioactive proteins/peptides, nanoparticles and drugs, can be carried by CPPs and delivered into cells in either covalent or noncovalent manners. Here, we focused on four arginine-rich CPPs and reviewed the mechanisms that these CPPs used for intracellular uptake across cellular plasma membranes. The varying transduction efficiencies of them alone or with cargoes were discussed, and the membrane permeability was also expounded for CPP/cargoes delivery in various species. Direct membrane translocation (penetration) and endocytosis are two principal mechanisms for arginine-rich CPPs mediated cargo delivery. Furthermore, the amino acid sequence is the primary key factor that determines the cellular internalization mechanism. Importantly, the non-cytotoxic nature and the wide applicability make CPPs a trending tool for cellular delivery.


2022 ◽  
Author(s):  
Wenjie Lang ◽  
Si Si Liew ◽  
Shuyi Wang ◽  
Dawei Hong ◽  
Liquan Zhu ◽  
...  

Monitoring gene delivery has significant benefits in gene therapy. Herein, we reported a nanoquencher system by doping a FRET pair during nucleic acid-assisted cell penetrating poly(disulfide)s (CPDs) formation. Our results...


2022 ◽  
Author(s):  
Long Yu Kong ◽  
Kui Zeng ◽  
Ying Zhang ◽  
Jinning Shao ◽  
Jiaqi Yan ◽  
...  

Cell-penetrating poly(disulfide)s (CPDs) are promising vehicles for cytosolic delivery of proteins. However, currently available arginine-rich CPD has rarely been reported for systemic delivery due to its “always” positive charge. Herein,...


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 78
Author(s):  
Hidetomo Yokoo ◽  
Makoto Oba ◽  
Satoshi Uchida

Messenger RNAs (mRNAs) were previously shown to have great potential for preventive vaccination against infectious diseases and therapeutic applications in the treatment of cancers and genetic diseases. Delivery systems for mRNAs, including lipid- and polymer-based carriers, are being developed for improving mRNA bioavailability. Among these systems, cell-penetrating peptides (CPPs) of 4–40 amino acids have emerged as powerful tools for mRNA delivery, which were originally developed to deliver membrane-impermeable drugs, peptides, proteins, and nucleic acids to cells and tissues. Various functionalities can be integrated into CPPs by tuning the composition and sequence of natural and non-natural amino acids for mRNA delivery. With the employment of CPPs, improved endosomal escape efficiencies, selective targeting of dendritic cells (DCs), modulation of endosomal pathways for efficient antigen presentation by DCs, and effective mRNA delivery to the lungs by dry powder inhalation have been reported; additionally, they have been found to prolong protein expression by intracellular stabilization of mRNA. This review highlights the distinctive features of CPP-based mRNA delivery systems.


2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Kathyana Deeyagahage ◽  
Antonio Ruzzini

The continued emergence and global distribution of infections caused by antimicrobial-resistant pathogens fuel our perpetual need for new or alternative therapies. Here, we present the discovery and initial characterization of bacterial cell-penetrating AMPs that were based on a family of virulence factors.


Sign in / Sign up

Export Citation Format

Share Document