coated electrodes
Recently Published Documents


TOTAL DOCUMENTS

491
(FIVE YEARS 54)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Zahilia Cabán Huertas ◽  
Daniel Settipani ◽  
Cristina Flox ◽  
Joan Ramon Morante ◽  
Tanja Kallio ◽  
...  

AbstractThis paper presents the electrochemical performance and characterization of nano Si electrodes coated with titanicone (TiGL) as an anode for Li ion batteries (LIBs). Atomic layer deposition (ALD) of the metal combined with the molecular layer deposition (MLD) of the organic precursor is used to prepare coated electrodes at different temperatures with improved performance compared to the uncoated Si electrode. Coated electrodes prepared at 150 °C deliver the highest capacity and best current response of 1800 mAh g−1 at 0.1 C and 150 mAh g−1 at 20 C. This represented a substantial improvement compared to the Si baseline which delivers a capacity of 1100 mAh g−1 at 0.1 C but fails to deliver capacity at 20 C. Moreover, the optimized coated electrode shows an outstanding capacity of 1200 mAh g−1 at 1 C for 350 cycles with a capacity retention of 93%. The improved discharge capacity, electrode efficiencies, rate capability and electrochemical stability for the Si-based electrode presented in this manuscript are directly correlated to the optimized TiGL coating layer deposited by the ALD/MLD processes, which enhances lithium kinetics and electronic conductivity as demonstrated by equivalent circuit analysis of low frequency impedance data and conductivity measurements. The coating strategy also stabilizes SEI film formation with better Coulombic efficiencies (CE) and improves long cycling stability by reducing capacity lost.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Md. Azahar Ali ◽  
Chunshan Hu ◽  
Bin Yuan ◽  
Sanjida Jahan ◽  
Mohammad S. Saleh ◽  
...  

AbstractSensing of clinically relevant biomolecules such as neurotransmitters at low concentrations can enable an early detection and treatment of a range of diseases. Several nanostructures are being explored by researchers to detect biomolecules at sensitivities beyond the picomolar range. It is recognized, however, that nanostructuring of surfaces alone is not sufficient to enhance sensor sensitivities down to the femtomolar level. In this paper, we break this barrier/limit by introducing a sensing platform that uses a multi-length-scale electrode architecture consisting of 3D printed silver micropillars decorated with graphene nanoflakes and use it to demonstrate the detection of dopamine at a limit-of-detection of 500 attomoles. The graphene provides a high surface area at nanoscale, while micropillar array accelerates the interaction of diffusing analyte molecules with the electrode at low concentrations. The hierarchical electrode architecture introduced in this work opens the possibility of detecting biomolecules at ultralow concentrations.


2021 ◽  
Vol 1208 (1) ◽  
pp. 012014
Author(s):  
Razija Begić

Abstract Due to their good structural properties, stainless Cr-Ni steels have a very wide application in various branches of technology. During the welding of stainless Cr-Ni steels with high-alloy coated electrodes, welding fumes of complex chemical composition are generated, which is very harmful for welders and the environment. For the purposes of this experiment, two variants of one rutile Cr-Ni commercial electrode, designated E 23 12 2 LR 12, were designed and fabricated. Higher production of welding fume particles also means greater danger to humans and the environment. In order to show the influence of the base material on the production of welding fume particles, an experiment for measuring the production of welding fume particles was performed in which two different steels were used as the base material, general structural steel S235JRG2 and stainless steel X6CrNiTi18.10.


2021 ◽  
Vol MA2021-02 (5) ◽  
pp. 1924-1924
Author(s):  
Kashif Mushtaq ◽  
Sofia Delgado ◽  
Adelio Mendes

2021 ◽  
Author(s):  
Zahilia Cabán Huertas ◽  
Daniel Settipani Ramirez ◽  
Cristina Flox ◽  
Joan Ramon Morante ◽  
Tanja Kallio ◽  
...  

Abstract This paper presents the electrochemical performance and characterization of nano Si electrodes coated with titanicone (TiGL) as an anode for Li-ion batteries. Atomic Layer Deposition (ALD) of the metal combined with the Molecular Layer Deposition (MLD) of the organic precursor is used to prepare coated electrodes at different temperatures with improved performance compared to the uncoated Si electrode. Coated electrodes prepared at 150° C delivers the highest capacity and best current response of 1800-1 mAhg-1 at 0.1 C and 150 mAhg-1 at 20 C. This represented a substantial improvement compared to the Si baseline which delivers a capacity of 1100 mAhg-1 at 0.1C but fails to deliver capacity at 20C. Moreover, the optimized coated electrode shows an outstanding capacity of 1200-1 at 1C for 350 cycles with a capacity decay of 93%. The improved discharge capacity, electrode efficiencies, rate capability and electrochemical stability for the Si-based electrode presented in this manuscript are directly correlated to the optimized TiGL coating layer deposited by the ALD/MLD processes, which enhances lithium kinetics as demonstrated by equivalent circuit analysis and low frequency data fitting. The coating strategy also stabilizes SEI film formation with better Coulombic efficiencies and improves long cycling stability by reducing capacity lost.


Author(s):  
Xorla Kanfra ◽  
Ahmed Elhady ◽  
Hendrik Thiem ◽  
Sven Pleger ◽  
Markus Höfer ◽  
...  

AbstractPhytonematodes cause severe yield losses in horticulture, partly because they are difficult to manage. Compact, energy-efficient generators that electrochemically produce ozonated water by utilizing diamond-coated electrodes have become available. In this study, the application of on-site generated ozonated water to inactivate soil nematodes and to mitigate nematode-mediated apple replant disease was tested. Pratylenchus penetrans was highly susceptible to dissolved ozone (LC50 0.6 mg L−1). In one greenhouse experiment, treatment of P. penetrans in soil with ozonated water (0.27 mg ozone L−1 soil) reduced subsequent invasion of the nematodes into roots by 60%. Growth of apple saplings in soil that was affected by apple replant disease (ARD) was significantly improved following a treatment with 1/10 volume ozonated water compared to the control. In a second greenhouse experiment, one-time drenching of ARD soil with ozonated water was followed by improved growth of apple plants similar to that in autoclaved soil. A second application of ozonated water did not further improve plant growth. The number of active nematodes in replanted soil that moved through a Baermann filter was significantly reduced by all tested concentrations of ozone (0.12–0.75 mg L−1 soil). A fraction of 19–36% of the nematodes survived and slightly recovered after four weeks. In conclusion, on-site generated ozonated water has potential to mitigate nematode problems in horticulture and to expand management options.


2021 ◽  
Vol 2021 (8) ◽  
pp. 47-52
Author(s):  
O.M. Kostin ◽  
◽  
О.О. Yaros ◽  
Y.О. Yaros ◽  
О.V. Savenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document