substrate degradation
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 45)

H-INDEX

31
(FIVE YEARS 3)

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1789
Author(s):  
Dare E. George ◽  
Jetze J. Tepe

The proteasome system is a large and complex molecular machinery responsible for the degradation of misfolded, damaged, and redundant cellular proteins. When proteasome function is impaired, unwanted proteins accumulate, which can lead to several diseases including age-related and neurodegenerative diseases. Enhancing proteasome-mediated substrate degradation with small molecules may therefore be a valuable strategy for the treatment of various neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s diseases. In this review, we discuss the structure of proteasome and how proteasome’s proteolytic activity is associated with aging and various neurodegenerative diseases. We also summarize various classes of compounds that are capable of enhancing, directly or indirectly, proteasome-mediated protein degradation.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 718-718
Author(s):  
Yumi Nakayama ◽  
Hsiling Chiu ◽  
Rama K. Narla ◽  
Arvind Shakya ◽  
Jim Gamez ◽  
...  

Abstract Introduction: Revlimid (Rev), binds to CRL4 CRBN E3 ligase leading to recruitment and proteasomal degradation of transcription factors Aiolos and Ikaros. This inhibits proliferation of malignant B cells and stimulates activity of T, NK and macrophage cells, thereby providing clinical activity of Rev as a single agent and in combination with CD19/CD20 antibodies in DLBCL and FL. Iberdomide (Iber), a new CELMoD with enhanced substrate degradation compared to Rev, is currently being studied in clinical trials for B-NHL and MM. Presented here is extensive in vitro and in vivo characterization of immune enhancement and antitumor effects of Iber with direct comparison to Rev. Results: In a panel of DLBCL cell lines, comprising ABC and GCB-DLBCL models, Iber degraded Aiolos/Ikaros with faster kinetics and to a greater depth than Rev, which led to enhanced antiproliferative and cytotoxic effects. Iber acted in a cell of origin independent manner, whereas Rev is preferentially active in ABC-DLBCL. To examine the molecular effects of Iber and Rev in immune cells, we performed RNAseq and proteomic based analyses on Iber and Rev treated T, NK and monocyte cell populations. These experiments revealed a complex series of immunomodulatory activities including promotion of pro-inflammatory cytokine production, activation marker expressions and migratory machinery with a trend of Iber exhibiting greater enhancements. We confirmed these findings by demonstrating that secretion of chemoattractants for T cells, NK cells and monocytes including CXCL9, 10 and 11 (10-90% increase) and CCL8 (30% increase, p<0.01) were higher in PBMCs treated with Iber compared to Rev. Additionally, functional chemotaxis assays demonstrated that Iber and Rev increased the trafficking capacity of T-cells compared to DMSO alone, with Iber demonstrating a greater increase than Rev (46% vs 21%, p<0.01). Furthermore, Iber increased the proliferative capacity of CD8+ T and NK cells compared to Rev (10 and 3.6-fold vs 4 and 2.8-fold, respectively). Functional co-culture assays with DLBCL cells showed that Iber induced NK cell mediated killing of DLBCL cells to a greater extent than Rev and each molecule enhanced ADCC with Rituximab compared to vehicle controls. Translational data from clinical trials of a related CELMoD, Avadomide, revealed significant trafficking of immune cells such a T cells, NK cells and monocytes to the tumor microenvironment (TME). To examine the effects of Rev and Iber in an in vivo DLBCL GEMM model, we developed a humanized CRBN (hCRBN) mouse capable of facilitating proteasomal degradation of target substrates upon treatment with a CELMoD. The hCRBN mouse was then crossed with the Eμ-Myc DLBCL mouse model resulting in Eμ-Myc/hCRBN progeny that then developed disease. Splenocytes were collected and transplanted to recipient hCRBN mice. The tumor cells were allowed to engraft for 5 days upon which 3 daily doses of vehicle, Rev and Iber were given prior to the mice being sacrificed. Non-transplanted hCRBN mice served as controls. Similar to human disease, DLBCL cells remodeled the myofibroblast-immune network within lymph node and the splenic tissues including activated podoplanin (PDPN)-expressing fibroblastic reticular cells (FRCs) and diminished CD8+ T cells and CD11c+ DCs within the lymphoid TMEs. Treatment with Iber resulted in significantly enhanced infiltration of DCs and notably, cytolytic granzyme B positive T cells into the TME compared to Rev or vehicle treated mice (Figure 1). Additional characterization of the immune (T cell, NK and monocyte)-stroma TME is on-going and will be presented. Conclusion: Our data demonstrate that Iber is more potent in substrate degradation and functionality in anti-proliferative activity against DLBCL cell line models and at triggering immunostimulatory activities in multiple lymphoid and myeloid populations. Additionally, we generated a humanized CRBN mouse model that revealed the ability of CELMoDs in inducing immune-rich TMEs supporting rational combination strategies with immune focused agents being explored in lymphoma such as SIRPα blockade, CAR T and CD3xCD20 bispecifics. Figure 1 Figure 1. Disclosures Nakayama: Bristol Myers Squibb: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Chiu: Bristol Myers Squibb: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Narla: Bristol Myers Squibb: Current Employment. Shakya: Bristol Myers Squibb: Current Employment. Gamez: Bristol Myers Squibb: Current Employment. Hagner: Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Gandhi: Bristol Myers Squibb: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company.


2021 ◽  
Author(s):  
Lisa A Johnson ◽  
Laura A Hug

Phylum Cloacimonadota (previously Cloacimonetes, WWE1) is an understudied bacterial lineage frequently associated with engineered and wastewater systems. Cloacimonadota members were abundant and diverse in metagenomic datasets from a municipal landfill, prompting an examination of phylogenetic relationships, metabolic diversity, and pangenomic dynamics across the phylum, based on 22 publicly available genomes and 24 from landfill samples. Cloacimonadota formed two discrete clades, with one clade's genomes principally deriving from engineered systems. A few more-divergent genomes were placed basal in the tree, and not associated with either clade. Metabolic reconstructions for metagenome-assembled genomes predict an anaerobic, acetogenic, and fermentative lifestyle for the majority of Cloacimonadota surveyed. Genomes from engineered ecosystems (first clade) encode a unique suite of genes not typically found in genomes from natural environments (second clade). These encoded functions include acetate kinase, the enzyme responsible for the formation of acetate from acetyl phosphate, and carbon utilization enzymes, suggesting different substrate degradation and energy generation strategies in these ecologically and phylogenetically distinct lineages.


2021 ◽  
Author(s):  
Erik Jonsson ◽  
Zaw Min Htet ◽  
Jared A.M. Bard ◽  
Ken C Dong ◽  
Andreas Martin

The 26S proteasome is the major ATP-dependent protease in eukaryotic cells, where it catalyzes the degradation of thousands of proteins for general homeostasis and the control of vital processes. It specifically recognizes appropriate substrates through attached ubiquitin chains and uses its ATPase motor for mechanical unfolding and translocation into a proteolytic chamber. Here, we used single-molecule Foerster Resonance Energy Transfer (FRET) measurements to provide unprecedented insights into the mechanisms of selective substrate engagement, ATP-dependent degradation, and the regulation of these processes by ubiquitin chains. Our assays revealed the proteasome conformational dynamics and allowed monitoring individual substrates as they progress through the central channel during degradation. We found that rapid transitions between engagement- and processing-competent conformations of the proteasome control substrate access to the ATPase motor. Ubiquitin-chain binding functions as an allosteric regulator to slow these transitions, stabilize the engagement-competent state, and facilitate degradation initiation. The global conformational transitions cease upon substrate engagement, and except for apparent motor slips when encountering stably folded domains, the proteasome remains in processing-competent states for substrate translocation and unfolding, which is further accelerated by ubiquitin chains. Our studies revealed the dependence of ATP-dependent substrate degradation on the conformational dynamics of the proteasome and its allosteric regulation by ubiquitin chains, which ensure substrate selectivity and prioritization in a crowded cellular environment.


2021 ◽  
Author(s):  
Dóra Balogh ◽  
Konstantin Eckel ◽  
Christian Fetzer ◽  
Stephan A. Sieber

Listeria monocytogenes exhibits two ClpP isoforms (ClpP1/ClpP2) which assemble into a heterooligomeric complex with enhanced proteolytic activity. Herein, we demonstrate that the formation of this complex depends on temperature and reaches a maximum ratio of about 1:1 at heat shock conditions, while almost no complex formation occurred below 4 °C. In order to decipher the role of the two isoforms at elevated temperatures, we constructed L. monocytogenes ClpP1, ClpP2 and ClpP1/2 knockout strains and analyzed their protein regulation in comparison to the wild type (WT) strain via whole proteome mass-spectrometry (MS) at 37 °C and 42 °C. While ΔclpP1 strain only altered the expression of very few proteins, ΔclpP2 and ΔclpP1/2 strains revealed the dysregulation of many proteins at both temperatures. These effects were corroborated by crosslinking co-immunoprecipitation MS analysis. Thus, while ClpP1 serves as a mere enhancer of protein degradation in the heterocomplex, ClpP2 is essential for ClpX binding and thus functions as a gatekeeper for substrate entry. Applying an integrated proteomic approach combining whole proteome and co immunoprecipitation datasets, several putative ClpP2 substrates were identified in the context of different temperatures and discussed with regards to their function in cellular pathways such as the SOS response.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Andreas Martin ◽  
Erik Jonsson ◽  
Zaw Htet ◽  
Erika Lopez‐Alfonzo ◽  
Ken Dong

Author(s):  
Shuai Zhou ◽  
Xiaoyu Zhang ◽  
Fuying Ma ◽  
Shangxian Xie ◽  
Chuanhong Tang ◽  
...  

To systemically understand the biosynthetic pathways of bioactive substances, including triterpenoids and polysaccharides, in Ganoderma lucidum, the correlation between substrate degradation, carbohydrate and triterpenoid metabolism during growth was analyzed by combining changes in metabolite content and changes in related enzyme expression in G. lucidum over 5 growth phases. Changes in low-polarity triterpenoid content were correlated with changes in glucose and mannitol content in fruiting bodies. Additionally, changes in medium-polarity triterpenoid content were correlated with changes in the lignocellulose content of the substrate and with the glucose, trehalose and mannitol contents of fruiting bodies. Weighted gene coexpression network analysis (WGCNA) indicated that changes in trehalose and polyol content were related to carbohydrate catabolism and polysaccharide synthesis. Changes in triterpenoid content were related to expression of the carbohydrate catabolic enzymes, laccase, cellulase, hemicellulase, and polysaccharide synthase and to the expression of several cytochrome P450 monooxygenases (CYPs). It was concluded that the products of cellulose and hemicellulose degradation participate in polyol, trehalose and polysaccharide synthesis during initial fruiting body formation. These carbohydrates accumulate in the early phase of fruiting body formation and are utilized when the fruiting bodies mature and a large number of spores are ejected. An increase in carbohydrate metabolism provides additional precursors for the synthesis of triterpenoids. Importance Most studies of G. lucidum have focused on its medicinal function and on the mechanism of its activity, whereas the physiological metabolism and synthesis of bioactive substances during the growth of this species have been less studied. Therefore, theoretical guidance for cultivation methods to increase the production of bioactive compounds remains lacking. This study integrated changes in the lignocellulose, carbohydrate and triterpenoid contents of G. lucidum with enzyme expression from transcriptomics data using WGCNA. The findings helped us better understand the connections between substrate utilization and the synthesis of polysaccharides and triterpenoids during the cultivation cycle of G. lucidum. The results of WGCNA suggest that the synthesis of triterpenoids can be enhanced not only through regulating the expression of enzymes in the triterpenoid pathway, but also through regulating carbohydrate metabolism and substrate degradation. This study provides a potential approach and identifies enzymes that can be targeted to regulate lignocellulose degradation and accelerate the accumulation of bioactive substances by regulating substrate degradation in G. lucidum.


Sign in / Sign up

Export Citation Format

Share Document