atmospheric light
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 46)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 2145 (1) ◽  
pp. 012053
Author(s):  
Ronald Macatangay ◽  
Worapop Thongsame ◽  
Raman Solanki ◽  
Ying-Jen Wu ◽  
Sheng-Hsiang Wang ◽  
...  

Abstract In this study, an improvement in the estimation of the mixing height is carried out by introducing a time-dependent maximum and minimum analysis altitude (TDMMAA) in the Haar wavelet covariance transform (WCT) technique applied to atmospheric light detection and ranging (LiDAR) measurements generally used in mixing height estimations. Results showed that the standard method usually overestimates the mixing height and that the proposed algorithm is more robust against clouds and residual layers in the boundary layer that generally occur in the nighttime and early morning. The TDMMAA method does have a bit of subjectivity especially in defining the analysis periods as well as the top and bottom of the analysis altitudes as it needs user experience and guidance. Moreover, the algorithm needs to be further objectively refined for automation and operational use, validated with in-situ profile measurements, and tested during different atmospheric conditions.


Author(s):  
Akey Sungheetha

Due to unfavorable weather circumstances, images captured from multiple sensors have limited the contrast and visibility. Many applications, such as web camera surveillance in public locations are used to identify object categorization and capture a vehicle's licence plate in order to detect reckless driving. The traditional methods can improve the image quality by incorporating luminance, minimizing distortion, and removing unwanted visual effects from the given images. Dehazing is a vital step in the image defogging process of many real-time applications. This research article focuses on the prediction of transmission maps in the process of image defogging through the combination of dark channel prior (DCP), transmission map with refinement, and atmospheric light estimation process. This framework has succeeded in the prior segmentation process for obtaining a better visualization. This prediction of transmission maps can be improved through the statistical process of obtaining higher accuracy for the proposed model. This improvement can be achieved by incorporating the proposed framework with an atmospheric light estimation algorithm. Finally, the experimental results show that the proposed deep learning model is achieving a superior performance when compared to other traditional algorithms.


Author(s):  
Dong Liu ◽  
Sungsoo Kim ◽  
Gorden Videen ◽  
Yongxiang Hu ◽  
Wenbo Sun

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254664
Author(s):  
Wenjiang Jiao ◽  
Xingwu Jia ◽  
Yuetong Liu ◽  
Qun Jiang ◽  
Ziyi Sun

As one of the most common adverse weather phenomena, haze has caused detrimental effects on many computer vision systems. To eliminate the effect of haze, in the field of image processing, image dehazing has been studied intensively, and many advanced dehazing algorithms have been proposed. Physical model-based and deep learning-based methods are two competitive methods for single image dehazing, but it is still a challenging problem to achieve fidelity and effectively dehazing simultaneously in real hazy scenes. In this work, a mixed iterative model is proposed, which combines a physical model-based method with a learning-based method to restore high-quality clear images, and it has good performance in maintaining natural attributes and completely removing haze. Unlike previous studies, we first divide the image into different regions according to the density of haze to accurately calculate the atmospheric light for restoring haze-free images. Then, dark channel prior and DehazeNet are used to jointly estimate the transmission to promote the final clear haze-free image that is more similar to the real scene. Finally, a numerical iterative strategy is employed to further optimize the atmospheric light and transmission. Extensive experiments demonstrate that our method outperforms existing state-of-the-art methods on synthetic datasets and real-world datasets. Moreover, to indicate the universality of the proposed method, we further apply it to the remote sensing datasets, which can also produce visually satisfactory results.


2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Mohit Kumar Verma ◽  
Permendra Kumar Verma

The enhancement of images is an image processing method that highlights certain image information according to specific needs and, at the same time, weakens or removes unwanted information. In the field of computer and machine vision, haziness and fog lead to degradation of images using different degradation mechanisms, including contrast attenuation, blurring, and degradation of the pixels. This limits machine vision systems efficiency such as video monitoring, target tracking, and recognition. Different dark channel single image dehazing algorithms have been designed quickly and efficiently to address image hazing problems. These algorithms rely on the dark channel theory to estimate the atmospheric light which is a crucial dehazing parameter. In this paper, a review of image dehazing and enhancement has been presented.


2021 ◽  
Vol 13 (13) ◽  
pp. 2432
Author(s):  
Zhiqin Zhu ◽  
Yaqin Luo ◽  
Hongyan Wei ◽  
Yong Li ◽  
Guanqiu Qi ◽  
...  

Remote sensing images are widely used in object detection and tracking, military security, and other computer vision tasks. However, remote sensing images are often degraded by suspended aerosol in the air, especially under poor weather conditions, such as fog, haze, and mist. The quality of remote sensing images directly affect the normal operations of computer vision systems. As such, haze removal is a crucial and indispensable pre-processing step in remote sensing image processing. Additionally, most of the existing image dehazing methods are not applicable to all scenes, so the corresponding dehazed images may have varying degrees of color distortion. This paper proposes a novel atmospheric light estimation based dehazing algorithm to obtain high visual-quality remote sensing images. First, a differentiable function is used to train the parameters of a linear scene depth model for the scene depth map generation of remote sensing images. Second, the atmospheric light of each hazy remote sensing image is estimated by the corresponding scene depth map. Then, the corresponding transmission map is estimated on the basis of the estimated atmospheric light by a haze-lines model. Finally, according to the estimated atmospheric light and transmission map, an atmospheric scattering model is applied to remove haze from remote sensing images. The colors of the images dehazed by the proposed method are in line with the perception of human eyes in different scenes. A dataset with 100 remote sensing images from hazy scenes was built for testing. The performance of the proposed image dehazing method is confirmed by theoretical analysis and comparative experiments.


Author(s):  
Disha M. Jaiswal

Mostly in winter season, the Northern area of India is mostly affected due to heavy haze. The road traffic and air traffic is affected due to poor visibility. According to the survey of Ministry of Road Transport and Highways of India, the number of accident due to poor visibility increasing every year. Hence there is need of robust algorithm to enhance the visibility of the camera feed. In the proposed approach, image dehazing algorithm has been present using dark channel prior. The proposed algorithm is developed for outdoor images. The proposed system processed the image through dark channel prior, estimation of atmospheric light, estimation of transmission and scene radiance. The proposed system achieved the promising results on O-Haze dataset.


Author(s):  
Xiangtian Zheng ◽  
Zhiyuan Xu

This paper presents an experimental study on the non-dispersive infrared (NDIR) detection technology and dark channel dehazing technology. Based on the analysis of Beer-Lambert Law and differential carbon dioxide detection principle, this paper proposes an atmospheric light value estimation algorithm based on NDIR detection technology. First, the change characteristics of the gas concentration in indoor smoky environment are collected and analyzed. Then appropriate weighting coefficients are chosen based on the gas characteristics to estimate the atmospheric light value. Finally, the digital image dehazing technology through dark channel prior is used for calculation to obtain a haze-free image with high quality and high resolution. The experiment in this paper proves the feasibility of combining NDIR detection technology with dehazing technology, and its ability to improve image quality and achieve better restoration effect.


Author(s):  
Yongpeng Pan ◽  
Zhenxue Chen ◽  
Xianming Li ◽  
Weikai He

Due to the haze weather, the outdoor image quality is degraded, which reduces the image contrast, thereby reducing the efficiency of computer vision systems such as target recognition. There are two aspects of the traditional algorithm based on the principle of dark channel to be improved. First, the restored images obviously contain color distortion in the sky region. Second, the white regions in the scene easily affect the atmospheric light estimated. To solve the above problems, this paper proposes a single-image dehazing and image segmentation method via dark channel prior (DCP) and adaptive threshold. The sky region of hazing image is relatively bright, so sky region does not meet the DCP. The sky part is separated by the adaptive threshold, then the scenery and the sky area are dehazed, respectively. In order to avoid the interference caused by white objects to the estimation of atmospheric light, we estimate the value of atmospheric light using the separated area of the sky. The algorithm in this paper makes up for the shortcoming that the algorithm based on the DCP cannot effectively process the hazing image with sky region, avoiding the effect of white objects on estimating atmospheric light. Experimental results show the feasibility and effectiveness of the improved algorithm.


Sign in / Sign up

Export Citation Format

Share Document