vertical gradients
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 33)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-46
Author(s):  
Sarah J. Doherty ◽  
Pablo E. Saide ◽  
Paquita Zuidema ◽  
Yohei Shinozuka ◽  
Gonzalo A. Ferrada ◽  
...  

Abstract. Biomass burning smoke is advected over the southeastern Atlantic Ocean between July and October of each year. This smoke plume overlies and mixes into a region of persistent low marine clouds. Model calculations of climate forcing by this plume vary significantly in both magnitude and sign. NASA EVS-2 (Earth Venture Suborbital-2) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) had deployments for field campaigns off the west coast of Africa in 3 consecutive years (September 2016, August 2017, and October 2018) with the goal of better characterizing this plume as a function of the monthly evolution by measuring the parameters necessary to calculate the direct aerosol radiative effect. Here, this dataset and satellite retrievals of cloud properties are used to test the representation of the smoke plume and the underlying cloud layer in two regional models (WRF-CAM5 and CNRM-ALADIN) and two global models (GEOS and UM-UKCA). The focus is on the comparisons of those aerosol and cloud properties that are the primary determinants of the direct aerosol radiative effect and on the vertical distribution of the plume and its properties. The representativeness of the observations to monthly averages are tested for each field campaign, with the sampled mean aerosol light extinction generally found to be within 20 % of the monthly mean at plume altitudes. When compared to the observations, in all models, the simulated plume is too vertically diffuse and has smaller vertical gradients, and in two of the models (GEOS and UM-UKCA), the plume core is displaced lower than in the observations. Plume carbon monoxide, black carbon, and organic aerosol masses indicate underestimates in modeled plume concentrations, leading, in general, to underestimates in mid-visible aerosol extinction and optical depth. Biases in mid-visible single scatter albedo are both positive and negative across the models. Observed vertical gradients in single scatter albedo are not captured by the models, but the models do capture the coarse temporal evolution, correctly simulating higher values in October (2018) than in August (2017) and September (2016). Uncertainties in the measured absorption Ångstrom exponent were large but propagate into a negligible (<4 %) uncertainty in integrated solar absorption by the aerosol and, therefore, in the aerosol direct radiative effect. Model biases in cloud fraction, and, therefore, the scene albedo below the plume, vary significantly across the four models. The optical thickness of clouds is, on average, well simulated in the WRF-CAM5 and ALADIN models in the stratocumulus region and is underestimated in the GEOS model; UM-UKCA simulates cloud optical thickness that is significantly too high. Overall, the study demonstrates the utility of repeated, semi-random sampling across multiple years that can give insights into model biases and how these biases affect modeled climate forcing. The combined impact of these aerosol and cloud biases on the direct aerosol radiative effect (DARE) is estimated using a first-order approximation for a subset of five comparison grid boxes. A significant finding is that the observed grid box average aerosol and cloud properties yield a positive (warming) aerosol direct radiative effect for all five grid boxes, whereas DARE using the grid-box-averaged modeled properties ranges from much larger positive values to small, negative values. It is shown quantitatively how model biases can offset each other, so that model improvements that reduce biases in only one property (e.g., single scatter albedo but not cloud fraction) would lead to even greater biases in DARE. Across the models, biases in aerosol extinction and in cloud fraction and optical depth contribute the largest biases in DARE, with aerosol single scatter albedo also making a significant contribution.


Diagnostics ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Sergiu Bilc ◽  
Adrian Groza ◽  
George Muntean ◽  
Simona Delia Nicoara

Optical coherence tomography (OCT) has become the leading diagnostic tool in modern ophthalmology. We are interested here in developing a support tool for the segmentation of retina layers. The proposed method relies on graph theory and geodesic distance. As each retina layer is characterised by different features, the proposed method interleaves various gradients during detection, such as horizontal and vertical gradients or open-closed gradients. The method was tested on a dataset of 750 OCT B-Scan Spectralis provided by the Ophthalmology Department of the County Emergency Hospital Cluj-Napoca. The method has smaller signed error on layers B1, B7 and B8, with the highest value of 0.43 pixels. The average value of signed error on all layers is −1.99 ± 1.14 px. The average value for mean absolute error is 2.60 ± 0.95 px. Since the target is a support tool for the human agent, the ophthalmologist can intervene after each automatic step. Human intervention includes validation or fine tuning of the automatic segmentation. In line with design criteria advocated by explainable artificial intelligence (XAI) and human-centered AI, this approach gives more control and transparency as well as more of a global perspective on the segmentation process.


2021 ◽  
Vol 11 (15) ◽  
pp. 6822
Author(s):  
Tua Nylén ◽  
Harri Tolvanen ◽  
Tapio Suominen

Our paper aims at advancing global change management in marine archipelago environments. Water properties vary along temporal and vertical gradients, and studies indicate that these patterns may be site-specific, i.e., they may vary at local or regional scales. Understanding these complex processes is crucial for designing environmental monitoring campaigns or assessing the scalability of their results. To our knowledge, the four-dimensional (temporal, vertical and horizontal) patterns of water quality have not been statistically quantified. In this paper, we partition the variation in four key water property variables into temporal, vertical and horizontal dimensions, by utilising a unique pre-existing high-density dataset and multilevel regression modelling. The dataset comprised measurements of temperature, salinity, pH and chlorophyll-a concentration, sampled eight times from April to October on the SW Finnish archipelago coast. All variables were sampled along the depth gradient and at local (102 m) and regional scales (104 m) at 20 sites. All measured variables varied significantly along the temporal and vertical gradients, and the overall levels, temporal patterns and vertical gradients of these variables were significantly site-dependent. Our study confirms that many water properties, especially chlorophyll-a concentration, show high four-dimensional variability in the complex archipelago environment. Thus, studies on the regional dynamics of archipelago water properties call for a high sampling density in time, along the vertical gradient, and in space.


2021 ◽  
Vol 14 (6) ◽  
pp. 4543-4564
Author(s):  
Noémie Planat ◽  
Josué Gehring ◽  
Étienne Vignon ◽  
Alexis Berne

Abstract. Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric signal is challenging. The present study develops a new method, called process identification based on vertical gradient signs (PIVSs), to spatially identify the occurrence of the main microphysical processes (aggregation and riming, crystal growth by vapor deposition and sublimation) in snowfall from dual-polarization Doppler radar scans. We first derive an analytical framework to assess in which meteorological conditions the local vertical gradients of radar variables reliably inform about microphysical processes. In such conditions, we then identify regions dominated by (i) vapor deposition, (ii) aggregation and riming and (iii) snowflake sublimation and possibly snowflake breakup, based on the sign of the local vertical gradients of the reflectivity ZH and the differential reflectivity ZDR. The method is then applied to data from two frontal snowfall events, namely one in coastal Adélie Land, Antarctica, and one in the Taebaek Mountains in South Korea. The validity of the method is assessed by comparing its outcome with snowflake observations, using a multi-angle snowflake camera, and with the output of a hydrometeor classification, based on polarimetric radar signal. The application of the method further makes it possible to better characterize and understand how snowfall forms, grows and decays in two different geographical and meteorological contexts. In particular, we are able to automatically derive and discuss the altitude and thickness of the layers where each process prevails for both case studies. We infer some microphysical characteristics in terms of radar variables from statistical analysis of the method output (e.g., ZH and ZDR distribution for each process). We, finally, highlight the potential for extensive application to cold precipitation events in different meteorological contexts.


Author(s):  
Israel Weinberger ◽  
Chaim I. Garfinkel ◽  
Ian P. White ◽  
Thomas Birner

AbstractThe connection between the polar stratospheric vortex and the vertical component of the Eliassen-Palm flux in the lower stratosphere and upper troposphere is examined in model level data from the ERA-5 reanalysis. The particular focus of this work is on the conditions that lead to upward wave propagation between the tropopause and the bottom of the vortex near 100 hPa. The ability of four different versions of the index of refraction to capture this wave propagation are evaluated. The original Charney and Drazin index of refraction includes terms ignored by Matsuno that are shown to be critical for understanding upward wave propagation just above the tropopause in both the climatology and during extreme heat flux events. By adding these terms to the Matsuno index of refraction, it is possible to construct a useful tool that describes wave flux immediately above the tropopause and at the same time also describes the role of meridional variations within the stratosphere. It is shown that a stronger tropopause inversion layer tends to restrict upward wave propagation. It is also shown that while only 38% of extreme wave-1 Eliassen-Palm flux vertical component (Fz) at 100hPa events are preceded by extreme Fz at 300hPa, there are almost no extreme events at 100hPa in which the anomaly at 300hPa is of opposite sign or very weak. Overall, wave propagation near the tropopause is sensitive to vertical gradients in buoyancy frequency, and these vertical gradients may not be accurately captured in models or reanalysis products especially with lower vertical resolutions.


2021 ◽  
Author(s):  
Guillaume Reboul ◽  
David Moreira ◽  
Nataliia V. Annenkova ◽  
Paola Bertolino ◽  
Konstantin E. Vershinin ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 2221-2233
Author(s):  
Sylvain Mailler ◽  
Romain Pennel ◽  
Laurent Menut ◽  
Mathieu Lachâtre

Abstract. The potential of the antidiffusive transport scheme proposed by Després and Lagoutière (1999) for resolving vertical transport in chemistry-transport models is investigated in an idealized framework with very encouraging results. We show that, compared to classical higher-order schemes, the Després and Lagoutière (1999) scheme reduces numerical diffusion and improves accuracy in idealized cases that are typical of atmospheric transport of tracers in chemistry-transport models. The increase in accuracy and the reduction in diffusion are substantial when, and only when, vertical resolution is insufficient to properly resolve vertical gradients, which is very frequent in chemistry-transport models. Therefore, we think that this scheme is an extremely promising solution for reducing numerical diffusion in chemistry-transport models.


2021 ◽  
Author(s):  
Sarah J. Doherty ◽  
Pablo E. Saide ◽  
Paquita Zuidema ◽  
Yohei Shinozuka ◽  
Gonzalo A. Ferrada ◽  
...  

Abstract. Biomass burning smoke is advected over the southeast Atlantic Ocean between July and October of each year. This smoke plume overlies and mixes into a region of persistent low marine clouds. Model calculations of climate forcing by this plume vary significantly, in both magnitude and sign. The NASA EVS-2 (Earth Venture Suborbital-2) ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project deployed for field campaigns off the west coast of Africa in three consecutive years (Sept., 2016; Aug., 2017; and Oct., 2018) with the goal of better characterizing this plume as a function of the monthly evolution, by measuring the parameters necessary to calculate the direct aerosol radiative effect. Here, this dataset and satellite retrievals of cloud properties are used to test the representation of the smoke plume and the underlying cloud layer in two regional models (WRF-CAM5 and CNRM-ALADIN) and two global models (GEOS and UM-UKCA). The focus is on comparisons of those aerosol and cloud properties that are the primary determinants of the direct aerosol radiative effect, and on the vertical distribution of the plume and its properties. The representativeness of the observations to monthly averages are tested for each field campaign, with the sampled mean aerosol light extinction generally found to be within 20 % of the monthly mean at plume altitudes. When compared to the observations, in all models the simulated plume is too vertically diffuse, has smaller vertical gradients, and, in two of the models (GEOS and UM-UKCA), the plume core is displaced lower than in the observations. Plume carbon monoxide, black carbon, and organic aerosol masses indicate under-estimates in modeled plume concentrations, leading in general to under-estimates in mid-visible aerosol extinction and optical depth. Biases in mid-visible single scatter albedo are both positive and negative across the models. Observed vertical gradients in single scatter albedo are not captured by the models, but the models do capture the coarse temporal evolution, correctly simulating higher values in October (2018) than in August (2018) and September (2017). Uncertainties in the measured absorption Ångstrom exponent were large but propagate into a negligible (<4 %) uncertainty in integrated solar absorption by the aerosol and therefore in the aerosol direct radiative effect. Model biases in cloud fraction, and therefore the scene albedo below the plume, vary significantly across the four models. The optical thickness of clouds is, on average, well simulated in the WRF-CAM5 and ALADIN models in the stratocumulus region and is under-estimated in the GEOS model; UM-UKCA simulates significantly too-high cloud optical thickness. Overall, the study demonstrates the utility of repeated, semi-random sampling across multiple years that can give insights into model biases and how these biases affect modeled climate forcing. The combined impact of these aerosol and cloud biases on the direct aerosol radiative effect (DARE) is estimated using a first-order approximation for a sub-set of five comparison gridboxes. A significant finding is that the observed gridbox-average aerosol and cloud properties yield a positive (warming) aerosol direct radiative effect for all five gridboxes, whereas DARE using the gridbox-averaged modeled properties ranges from much larger positive values to small, negative values. It is shown quantitatively how model biases can offset each other, so that model improvements that reduce biases in only one property (e.g., single scatter albedo, but not cloud fraction) would lead to even greater biases in DARE. Across the models, biases in aerosol extinction and in cloud fraction and optical depth contribute the largest biases in DARE, with aerosol single scatter albedo also making a significant contribution.


Author(s):  
Charles M. Kuster ◽  
Barry R. Bowers ◽  
Jacob T. Carlin ◽  
Terry J. Schuur ◽  
Jeff W. Brogden ◽  
...  

AbstractDecades of research has investigated processes that contribute to downburst development, as well as identified precursor radar signatures that can accompany these events. These advancements have increased downburst predictability, but downbursts still pose a significant forecast challenge, especially in low-shear environments that produce short-lived single and multicell thunderstorms. Additional information provided by dual-polarization radar data may prove useful in anticipating downburst development. One such radar signature is the KDP core, which can indicate processes such as melting and precipitation loading that increase negative buoyancy and can result in downburst development. Therefore, KDP cores associated with 81 different downbursts across 10 states are examined to explore if this signature could provide forecasters with a reliable and useable downburst precursor signature. KDP core characteristics near the environmental melting layer, vertical gradients of KDP, and environmental conditions were quantified to identify any differences between downbursts of varying intensities. The analysis shows that 1) KDP cores near the environmental melting layer are a reliable signal that a downburst will develop, 2) while using KDP cores to anticipate an impending downburst’s intensity is challenging, larger KDP near the melting layer and larger vertical gradients of KDP are more commonly associated with strong downbursts than weak ones, 3) downbursts occurring in environments with less favorable conditions for downbursts are associated with higher magnitude KDP cores, and 4) KDP cores evolve relatively slowly (typically longer than 15 min), which makes them easily observable with the 5-min volumetric updates currently provided by operational radars.


Sign in / Sign up

Export Citation Format

Share Document