filamentary discharge
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Shih-Sen Huang ◽  
Hsing-Che Tsai ◽  
Jerry Chang ◽  
Po-Chun Huang ◽  
Yun-Chien Cheng ◽  
...  

Abstract To simulate the I-V diagram of plasma homogeneous and filamentary discharge with equivalent circuit model more accurately, this study employed a breaker and passive circuit components and calculated the discharge parameters, such as equivalent discharge resistances and potential distribution etc., in atmospheric-pressure plasma jet (APPJ). In addition, this study calculated the gas-gap and dielectric capacitances of the APPJ and added a power supply equivalent circuit. Compared with other circuit models that adopted switches or a time-controlled current source to simulate the discharges, our present circuit model used a breakdown-voltage-controlled breaker for the homogeneous discharge and resistors with high-frequency switches for the filamentary discharge. We employed potential simulation to obtain the equivalent dielectric capacitance in the APPJ and then derived the gas-gap capacitance. We also replaced the ideal sine wave power supply with the equivalent circuit of the common double-peak-waveform power supply. The MATLAB Simulink was used to construct an equivalent circuit model and the discharge area ratio, breakdown voltage and filamentary equivalent resistance were obtained via I-V waveform fitting. We measured the plasma I-V waveform with a 20-kHz frequency, various voltages (6, 12, and 15 kV), a gas flow rate of 30 SLM, and two types of gas (Ar and He). The simulated and experimental I-V waveforms were very close under different conditions. In summary, the proposed equivalent circuit model more meaningfully describes the plasma physics to simulate homogenous and filamentary discharge, achieving results that were compatible with our experimental observations. The findings can help with investigating plasma discharge mechanisms and full-model simulations of plasma.


Author(s):  
Siqi Yu ◽  
Huijie Yan ◽  
Jiaqi Li ◽  
ting li ◽  
Yuying Wang ◽  
...  

Abstract The evolution of surface charge in surface dielectric barrier discharge (SDBD) is observed by using Pockels effect. SDBD is driven by sine AC and pulse dual-power supply voltage. The filamentary discharge and glow-like discharge are enhanced by superimposing positive pulse on sine trough and negative pulse on sine crest, respectively. The interval of enhanced discharge is adjusted by pulse repetition rate (PRF). The formation and decay of surface charges are analyzed at low PRF, and the accumulation effect is analyzed at high PRF. The results showed that the decay rates of charges decrease with increasing distance from the exposed electrode. When a positive pulse is superimposed on sine trough, the traces of positive charges are filaments with long extending lengths, which are the footprints of discharge channels. The lifetime of positive charges is hundreds of AC cycles (tens of milliseconds). Under certain conditions, subsequent glow-like discharge evolves as “flying” above the dielectric surface (3D propagation). Most of the negative charges are neutralized in subsequent filamentary discharge. Some negative charges accumulate downstream and exist longer than positive charges. In the case of negative pulses superimposed on sine crest, the enhanced glow-like discharge appears 3D propagation. The propagation distance is much smaller than that of positive pulse. Most of the negative charges are uniformly distributed near the exposed electrodes with a short lifetime (a few hundred microseconds) and are quickly neutralized in subsequent discharges. The occurrence of 3D propagation requires certain conditions and the mechanism needs further research.


2021 ◽  
Vol 30 (1) ◽  
pp. 015001
Author(s):  
J Faltýnek ◽  
V Kudrle ◽  
M Šnírer ◽  
J Toman ◽  
O Jašek

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1595 ◽  
Author(s):  
Ju Li ◽  
Xingwu Zhai ◽  
Cunhua Ma ◽  
Shengjie Zhu ◽  
Feng Yu ◽  
...  

In the last few years, due to the large amount of greenhouse gas emissions causing environmental issue like global warming, methods for the full consumption and utilization of greenhouse gases such as carbon dioxide (CO2) have attracted great attention. In this study, a packed-bed dielectric barrier discharge (DBD) coaxial reactor has been developed and applied to split CO2 into industrial fuel carbon monoxide (CO). Different packing materials (foam Fe, Al, and Ti) were placed into the discharge gap of the DBD reactor, and then CO2 conversion was investigated. The effects of power, flow velocity, and other discharge characteristics of CO2 conversion were studied to understand the influence of the filling catalysts on CO2 splitting. Experimental results showed that the filling of foam metals in the reactor caused changes in discharge characteristics and discharge patterns, from the original filamentary discharge to the current filamentary discharge as well as surface discharge. Compared with the maximum CO2 conversion of 21.15% and energy efficiency of 3.92% in the reaction tube without the foam metal materials, a maximum CO2 decomposition rate of 44.84%, 44.02%, and 46.61% and energy efficiency of 6.86%, 6.19%, and 8.85% were obtained in the reaction tubes packed with foam Fe, Al, and Ti, respectively. The CO2 conversion rate for reaction tubes filled with the foam metal materials was clearly enhanced compared to the non-packed tubes. It could be seen that the foam Ti had the best CO2 decomposition rate among the three foam metals. Furthermore, we used density functional theory to further verify the experimental results. The results indicated that CO2 adsorption had a lower activation energy barrier on the foam Ti surface. The theoretical calculation was consistent with the experimental results, which better explain the mechanism of CO2 decomposition.


2018 ◽  
Vol 52 (4) ◽  
pp. 044003 ◽  
Author(s):  
Yuchen Luo ◽  
Amanda M Lietz ◽  
Shurik Yatom ◽  
Mark J Kushner ◽  
Peter J Bruggeman

Sign in / Sign up

Export Citation Format

Share Document