geographic range
Recently Published Documents


TOTAL DOCUMENTS

1082
(FIVE YEARS 262)

H-INDEX

68
(FIVE YEARS 7)

Zootaxa ◽  
2022 ◽  
Vol 5087 (2) ◽  
pp. 201-252
Author(s):  
ANDRÉ BISPO ◽  
PHILIPPE WILLENZ ◽  
EDUARDO HAJDU

The Peruvian coast is certainly one of the poorest studied areas in the world for marine sponges biodiversity, with only 20 species registered so far from over 2,400 km coastline. In spite of its great species richness worldwide, there is not a single record of Haplosclerida in Peru. Accordingly, in this study we aimed to describe the species belonging to this order present in the relatively recent collections undertaken along the Peruvian coast by two of us (PhW, EH). Here, we describe fourteen new species, provisionally endemic to the Peruvian coast. This finding represents a major addition to the knowledge of the biodiversity of sponges along the Peruvian coast, increasing the list of species known to occur in this area by about 68%. This is also the largest single proposal of new Haplosclerida in over 37 years of sponge taxonomy worldwide. Niphates is for the first time recorded in the Southeastern Pacific, and an identification key to the Haplosclerida from the Peruvian coast is provided. Regarding the distribution of the described species, most of them—except for Chalinula chelysa sp. nov.—have a narrow geographic range, which might indicate their rarity or that the haplosclerid fauna in Peru is still poorly known.  


2022 ◽  
Author(s):  
Corina J Logan ◽  
Aaron Blaisdell ◽  
Zoe Johnson-Ulrich ◽  
Dieter Lukas ◽  
Maggie MacPherson ◽  
...  

Behavioral flexibility, the ability to adapt behavior to new circumstances, is thought to play an important role in a species' ability to successfully adapt to new environments and expand its geographic range. However, flexibility is rarely directly tested in species in a way that would allow us to determine how flexibility works and predictions a species' ability to adapt their behavior to new environments. We use great-tailed grackles (a bird species) as a model to investigate this question because they have rapidly expanded their range into North America over the past 140 years. We attempted to manipulate grackle flexibility using colored tube reversal learning to determine whether flexibility is generalizable across contexts (touchscreen reversal learning and multi-access box), whether it is repeatable within individuals and across contexts, and what learning strategies grackles employ. We found that we were able to manipulate flexibility: birds in the manipulated group took fewer trials to pass criterion with increasing reversal number, and they reversed a color preference in fewer trials by the end of their serial reversals compared to control birds who had only one reversal. Flexibility was repeatable within individuals (reversal), but not across contexts (from reversal to multi-access box). The touchscreen reversal experiment did not appear to measure what was measured in the reversal learning experiment with the tubes, and we speculate as to why. One third of the grackles in the manipulated reversal learning group switched from one learning strategy (epsilon-decreasing where they have a long exploration period) to a different strategy (epsilon-first where they quickly shift their preference). A separate analysis showed that the grackles did not use a particular strategy earlier or later in their serial reversals. Posthoc analyses using a model that breaks down performance on the reversal learning task into different components showed that learning to be attracted to an option (phi) more consistently correlated with reversal performance than the rate of deviating from learned attractions that were rewarded (lambda). This result held in simulations and in the data from the grackles: learning rates in the manipulated grackles doubled by the end of the manipulation compared to control grackles, while the rate of deviation slightly decreased. Grackles with intermediate rates of deviation in their last reversal, independently of whether they had gone through the serial reversal manipulation, solved fewer loci on the plastic and wooden multi-access boxes, and those with intermediate learning rates in their last reversal were faster to attempt a new locus on both multi-access boxes. This investigation allowed us to make causal conclusions rather than relying only on correlations: we manipulated reversal learning, which caused changes in a different flexibility measure (multi-access box switch times) and in an innovativeness measure (multi-access box loci solved), as well as validating that the manipulation had an effect on the cognitive ability we think of as flexibility. Understanding how behavioral flexibility causally relates to other traits will allow researchers to develop robust theory about what behavioral flexibility is and when to invoke it as a primary driver in a given context, such as a rapid geographic range expansion. Given our results, flexibility manipulations could be useful in training threatened and endangered species in how to be more flexible. If such a flexibility manipulation was successful, it could then change their behavior in this and other domains, giving them a better chance of succeeding in human modified environments.


2022 ◽  
Author(s):  
Hugo Alejandro Álvarez ◽  
Miguel Alejandro Rivas-Soto

The Megaloptera are an interesting, but relatively poorly studied group of insects. Among the new world Megaloptera, it is not known the effect of the neartic-neotropical transition zone on their biogeographic distribution. Here we present potential geographic distributions based on ecological niche models of the species of Megaloptera from North America that occurred in the transition zone. Results suggested that the geographic range of Corydalinae (dobsonflies) in the transition zone is associated to mountainous formations and that most species favour for warm climates with higher precipitation rates. Climate types tend to be important for species that show narrow geographic ranges, but precipitation tends to be the most important variable to explain species dispersion. In addition, Chauliodinae (fishflies) and Sialidae (alderflies) may have no relation with the transition zone. Overall, our models support the dispersion of dobsonflies from the neotropics to North America and explain the two endemisms in Mexico as the result of the formation of the transition zone.


2022 ◽  
Author(s):  
Maya Weinberg ◽  
Omer Mazar ◽  
Sohpie Goutnik ◽  
Lee Harten ◽  
Michal Handel ◽  
...  

Egyptian fruit bats (Rousettus aegyptiacus) manage to survive and flourish in a large geographic range despite the variability of natural and anthropogenic conditions in this range. To examine the challenges faced by free-ranging R. aegyptiacus living at the northern edge of their distribution, we performed a retrospective analysis of ~1500 clinical cases reported by a bat rescue NGO over 25 months, from all over Israel. All cases of injured or stranded bats were evaluated and categorized according to date, place, sex, age, and etiology of the morbidity. The analysis of the data showed an increase in all types of morbidity during the wintertime, with more than twice the number of cases in comparison with the summertime, over two consecutive years. Moreover, we found that the number of abandoned pups peaks during spring till autumn when adult morbidity is minimal. We characterize two prominent types of previously undescribed morbidity in R. aegyptiacus, one in the form of bacterial illness, and the other associated with feet deformation which affects bats in addition to major anthropogenic-related threats related to synanthropic predators. We analyze the reasons driving winter morbidity and conclude that winter weather and specifically low temperature best explains this morbidity. We hypothesize that R. aegyptiacus, a fruit-bat of tropical origin is facing major seasonal difficulties near the northern edge of its distribution, probably limiting its further spread northward.


2021 ◽  
Vol 20 (2) ◽  
pp. 151-159
Author(s):  
Ricardo Palacios-Aguilar ◽  
Rufino Santos-Bibiano ◽  
Jonathan Atwood Campbell ◽  
Elizabeth Beltrán-Sánchez

Small, secretive snakes comprise an important part of the herpetofauna of the Neotropics and yet most species are known from a handful of specimens due to their habits and relatively inaccessible localities. The Mexican endemic Rhadinella dysmica is the westernmost species of the genus and was described based on a single adult female. Herein we provide information on new specimens, including their morphological variation and hemipenial structure, expand the known geographic range for the species, and comment on the morphological similarities of the “dark-colored” species of the genus.


2021 ◽  
Author(s):  
Kayla Stoy ◽  
Joselyne Chavez ◽  
Valeria De Las Casas ◽  
Venkat Talla ◽  
Aileen Berasategui ◽  
...  

AbstractMutualism depends on the alignment of host and symbiont fitness. Horizontal transmission can readily decouple fitness interests, yet horizontally transmitted mutualisms are common in nature. We hypothesized that pairwise coevolution and specialization in host-symbiont interactions underlies the maintenance of cooperation in a horizontally transmitted mutualism. Alternatively, we predicted selection by multiple host species may select for cooperative traits in a generalist symbiont through diffuse coevolution. We tested for signatures of pairwise coevolutionary change between the squash bug Anasa tristis and its horizontally acquired bacterial symbiont Caballeronia spp. by measuring local adaptation. We found no evidence for local adaptation between sympatric combinations of A. tristis squash bugs and Caballeronia spp. across their native geographic range. To test for diffuse coevolution, we performed reciprocal inoculations to test for specialization between three Anasa host species and Caballeronia spp. symbionts isolated from conspecific hosts. We observed no evidence of specialization across host species. Our results demonstrate generalist dynamics underlie the interaction between Anasa insect hosts and their Caballeronia spp. symbionts. Specifically, diffuse coevolution between multiple host species with a shared generalist symbiont may maintain cooperative traits despite horizontal transmission.


2021 ◽  
Author(s):  
Marie E Hardouin ◽  
Anna L Hargreaves

Protecting habitat of species-at-risk is critical to their recovery, but can be contentious. For example, protecting species that are locally imperilled but globally common (e.g. species that only occur in a jurisdiction at the edge of their geographic range) is often thought to distract from protecting globally-imperilled species. However, such perceived trade-offs are based on the assumption that threatened groups have little spatial overlap, which is rarely quantified. Here, we compile range maps of terrestrial species-at-risk in Canada to assess the geographic overlap of nationally and globally at-risk species with each other, among taxonomic groups, and with protected areas. While many nationally-at-risk taxa only occurred in Canada at their northern range edge (median=4% of range in Canada), nationally-at-risk species were not significantly more peripheral in Canada than globally-at-risk species. Further, 56% of hotspots of nationally-at-risk taxa were also hotspots of globally-at-risk taxa in Canada, undercutting the perceived trade-off in their protection. Hotspots of nationally-at-risk taxa also strongly overlapped with hotspots of individual taxonomic groups, though less so for mammals. While strong spatial overlap across threat levels and taxa should facilitate efficient habitat protection, <7% of the area in Canada's at-risk hotspots is protected, and more than 70% of nationally and globally-at-risk species in Canada have <10% of their Canadian range protected. Our results counter the perception that protecting nationally vs. globally at-risk species are at odds, and identify critical areas to target as Canada strives to increase its protected areas and promote species-at-risk recovery.


2021 ◽  
pp. 105785
Author(s):  
Shahan Azeem ◽  
Banshi Sharma ◽  
Shafqat Shabir ◽  
Haroon Akbar ◽  
Estelle Venter

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Wereszczuk ◽  
Tim R. Hofmeester ◽  
Alexander Csanády ◽  
Tomislav Dumić ◽  
Morten Elmeros ◽  
...  

AbstractMany species show spatial variation in body size, often associated with climatic patterns. Studying species with contrasting geographical patterns related to climate might help elucidate the role of different drivers. We analysed changes in the body mass of two sympatric medium-sized carnivores—pine marten (Martes martes) and stone marten (Martes foina)—across Europe over 59 years. The body mass of pine marten increased with decreasing latitude, whereas stone marten body mass varied in a more complex pattern across its geographic range. Over time, the average body mass of pine martens increased by 255 g (24%), while stone marten by 86 g (6%). The greatest increase of body mass along both martens’ geographic range was observed in central and southern Europe, where both species occur in sympatry. The body mass increase slowed down over time, especially in allopatric regions. The average pine/stone marten body mass ratio increased from 0.87 in 1960 to 0.99 in 2019, potentially strengthening the competition between them. Thus, a differential response in body size to several drivers over time might have led to an adaptive advantage for pine martens. This highlights the importance of considering different responses among interacting species when studying animal adaptation to climate change.


Sign in / Sign up

Export Citation Format

Share Document