modular structures
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 60)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 289 (1966) ◽  
Author(s):  
Priscila S. Rothier ◽  
Monique N. Simon ◽  
Gabriel Marroig ◽  
Anthony Herrel ◽  
Tiana Kohlsdorf

Selective regimes favouring the evolution of functional specialization probably affect covariation among phenotypic traits. Phalanges of most tetrapods develop from a conserved module that constrains their relative proportions. In geckos, however, biomechanical specializations associated with adhesive toepads involve morphological variation in the autopodium and might reorganize such modular structures. We tested two hypotheses to explain the modular architecture of hand bones in geckos, one based on developmental interactions and another incorporating functional associations related to locomotion, and compared the empirical support for each hypothetical module between padded and padless lineages. We found strong evidence for developmental modules in most species, which probably reflects embryological constraints during phalangeal formation. Although padded geckos exhibit a functional specialization involving the hyperextension of the distal phalanges that is absent in padless species, the padless species are the ones that show a distal functional module with high integration. Some ancestrally padless geckos apparently deviate from developmental predictions and present a relatively weak developmental module of phalanges and a strongly integrated distal module, which may reflect selective regimes involving incipient frictional adhesion in digit morphology. Modularity of digit elements seems dynamic along the evolutionary history of geckos, being associated with the presence/absence of adhesive toepads.


2021 ◽  
Vol 11 (24) ◽  
pp. 12110
Author(s):  
Kyong Min Ro ◽  
Min Sook Kim ◽  
Chang Geun Cho ◽  
Young Hak Lee

In modular structures, prefabricated modular units are joined at the construction site. Modular structures must ensure splicing performance by connecting modular units sufficiently. The bolted connection using steel plates may suffer from alignment issues and corrosion problems. In a precast concrete (PC) modular system, there is difficulty grouting the sleeves when splicing reinforcing bars. This study proposed a PC modular beam using a bolted connecting plate to deal with issues in typical steel modules and PC modules. The structural performance was evaluated by flexural and shear tests on two monolithic beams and two proposed PC specimens. The test results showed that the structural performance of the PC modular specimen was 88% of that of the monolithic reinforced concrete (RC) beam specimen and 102% of the strength calculated by ACI 318-19. Therefore, the proposed PC modular system using bolted connecting plates can solve the problems observed in typical steel and PC modules and improve the structural performance.


2021 ◽  
pp. 1-24
Author(s):  
Paulo Reis Mourao

The network of Portuguese companies in 1973 has been identified as a relevant element for understanding the economic structure of the country in the decade of 1970–1980. This network had been formed before 1974, during the dictatorship, but it remained after the Carnation Revolution. In spite of such research, this network has not yet been properly analysed, especially through adequate tools from network analysis. This work will detail this network, the different scores of centrality of each company, and their modular structures; it will also discuss estimates from exponential random graph models to identify significant attributes that explain the discovered flows of investment. This work will also detail the processes of vertical integration as well as the specificities of the identified oligopolies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kurea Nakagawa ◽  
Tomoyuki Yokouchi ◽  
Yuki Shiomi

AbstractPeltier effects, which produce a heat flux at the junction of two different materials, have been an important technology for heating and cooling by electrical means. Whereas Peltier devices have advantages such as cleanliness, silence, compactness, flexibility, reliability, and efficiency, relatively complicated modular structures are unavoidable, leading to a higher cost than that of commonly used refrigeration technology. Here, we provide a concept of a Peltier device composed of a single magnetic material exhibiting a first-order magnetic transition. Our concept is based on a controllable junction structure consisting of two magnetic phases with opposite Peltier coefficients instead of a semiconductor junction. Using $${\mathrm{Mn}}_{1.96}{\mathrm{Cr}}_{0.04}\mathrm{Sb}$$ Mn 1.96 Cr 0.04 Sb samples with the first-order magnetic transition between ferrimagnetic (FI) and antiferromagnetic (AF) states, we successfully made a stable junction structure of AF/FI/AF by a pulse heating method and achieved a maximum Peltier coefficient of 0.58 mV. Our device concept was further verified by a numerical simulation based on a finite element method. The single-material Peltier effect reported here avoids a complex device design involving material junctions and is importantly reconfigurable.


2021 ◽  
Vol 1 (2) ◽  
pp. 48-53
Author(s):  
Ragil Widyorini ◽  
Nasmi Herlina Sari ◽  
Muji Setiyo ◽  
Gunawan Refiadi

In the last few decades, the global community's demands are getting stronger for more environmentally friendly materials. Natural fiber reinforced composites have been applied as reinforcement in concrete, sound absorbers, buildings, aeronautical, aerospace, sanitation, electronics, bridge decks, interior, automotive, sports equipment and furniture industries, modular structures, and others. Natural fibers are receiving high attention due to their sustainability, environmental friendliness, low density, low cost, low abrasiveness, renewability, and biodegradability, as well as contributing to the consumption of CO2 gas. As reported by many researchers, Indonesia has several natural resources for natural fibers such as bark fiber, leaf fiber, seed/fruit fiber, grass fiber, stalk fiber, and wood fiber.


2021 ◽  
Author(s):  
Mikail Khona ◽  
Sarthak Chandra ◽  
Ila Fiete

Modular structures in the brain play a central role in compositionality and intelligence, however the general mechanisms driving module emergence have remained elusive. Studying entorhinal grid cells as paradigmatic examples of modular architecture and function, we demonstrate the spontaneous emergence of a small number of discrete spatial and functional modules from an interplay between continuously varying lateral interactions generated by smooth cortical gradients. We derive a comprehensive analytic theory of modularization, revealing that the process is highly generic with its robustness deriving from topological origins. The theory generates universal predictions for the sequence of grid period ratios, furnishing the most accurate explanation of grid cell data to date. Altogether, this work reveals novel principles by which simple bottom-up dynamical interactions lead to macroscopic modular organization.


2021 ◽  
Author(s):  
Kurea Nakagawa ◽  
Tomoyuki Yokouchi ◽  
Yuki Shiomi

Abstract Peltier effects, which produce a heat flux at the junction of two different materials, have been an important technology for heating and cooling by electrical means. Whereas Peltier devices have advantages such as cleanliness, silence, compactness, flexibility, reliability, and efficiency, relatively complicated modular structures are unavoidable, leading to a higher cost than that of commonly used refrigeration technology. Here, we provide a concept of a Peltier device composed of a single magnetic material exhibiting a first-order magnetic transition. Our concept is based on a controllable junction structure consisting of two magnetic phases with opposite Peltier coefficients instead of a semiconductor junction. Using Mn1.96Cr0.04Sb samples with the first-order magnetic transition between ferrimagnetic (FI) and antiferromagnetic (AF) states, we successfully made a stable junction structure of AF/FI/AF by a pulse heating method and achieved a maximum Peltier coefficient of 0.58 mV. Our device concept was further verified by a numerical simulation based on a finite element method. The single-material Peltier effect reported here avoids a complex device design involving material junctions and is importantly reconfigurable.


Author(s):  
Dana Vaknin ◽  
Amir Bashan ◽  
Lidia A. Braunstein ◽  
Sergey Buldyrev ◽  
Shlomo Havlin

2021 ◽  
Vol 11 (19) ◽  
pp. 9277
Author(s):  
Gohar Nadeem ◽  
Nor Azizi Safiee ◽  
Nabilah Abu Bakar ◽  
Izian Abd Karim ◽  
Noor Azline Mohd Nasir

The intermodular connection between modules plays a vital role in the overall performance of modular structures. The separation between a column and connection is possible due to the absence of links (welding or bolting) since limited space is available between modules. This study proposed a self-locking joint to be used in a modular steel structure, connecting columns with a connection without need of extra space between modules. The behavior of the proposed connection subjected to monotonic load was evaluated using a finite element approach using ABAQUS software. The influencing factors contributed to the behavior of the self-locking connection and columns observed using a parametric study. The parametric study was conducted by varying beam thickness, bolt pretension force and friction coefficient µ. Results indicate that the proposed connection can be classified as a semirigid connection according to Eurocode 3 and special moment frame (SMF) as recommended by AISC.


Sign in / Sign up

Export Citation Format

Share Document