many body interactions
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 87)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Thomas Deckert ◽  
Jonas Allerbeck ◽  
Takayuki Kurihara ◽  
Daniele Brida

Abstract Energetic correlations and their dynamics govern the fundamental properties of condensed matter materials. Ultrafast multidimensional spectroscopy in the mid infrared is an advanced technique to study such coherent low-energy dynamics. The intrinsic many-body phenomena in functional solid-state materials, in particular few-layer samples, remain widely unexplored to this date, because complex and weak sample responses demand versatile and sensitive detection. Here, we present a novel setup for ultrafast multidimensional spectroscopy with noncollinear geometry and complete field resolution in the 15-40 THz range. Electric fields up to few-100 kV cm-1 drive coherent dynamics in a perturbative regime, and an advanced modulation scheme allows to detect nonlinear signals down to a few tens of V cm-1 entirely background-free with high sensitivity and full control over the geometric phase-matching conditions. Our system aims at the investigation of correlations and many-body interactions in condensed matter systems at low energy. Benchmark measurements on bulk indium antimonide (InSb) reveal a strong six-wave mixing signal and map ultrafast changes of the band structure with access to amplitude and phase information. Our results pave the way towards the investigation of functional thin film materials and few-layer samples.


2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Rai Moriya ◽  
Sabin Park ◽  
Satoru Masubuchi ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

2021 ◽  
Vol 118 (49) ◽  
pp. e2111142118
Author(s):  
Alexandra V. Zampetaki ◽  
Benno Liebchen ◽  
Alexei V. Ivlev ◽  
Hartmut Löwen

The quest for how to collectively self-organize in order to maximize the survival chances of the members of a social group requires finding an optimal compromise between maximizing the well-being of an individual and that of the group. Here we develop a minimal model describing active individuals which consume or produce, and respond to a shared resource—such as the oxygen concentration for aerotactic bacteria or the temperature field for penguins—while urging for an optimal resource value. Notably, this model can be approximated by an attraction–repulsion model, but, in general, it features many-body interactions. While the former prevents some individuals from closely approaching the optimal value of the shared “resource field,” the collective many-body interactions induce aperiodic patterns, allowing the group to collectively self-optimize. Arguably, the proposed optimal field–based collective interactions represent a generic concept at the interface of active matter physics, collective behavior, and microbiological chemotaxis. This concept might serve as a useful ingredient to optimize ensembles of synthetic active agents or to help unveil aspects of the communication rules which certain social groups use to maximize their survival chances.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fengyuan Xuan ◽  
Su Ying Quek

AbstractCarrier-doped transition metal dichalcogenide (TMD) monolayers are of great interest in valleytronics due to the large Zeeman response (g-factors) in these spin-valley-locked materials, arising from many-body interactions. We develop an ab initio approach based on many-body perturbation theory to compute the interaction-enhanced g-factors in carrier-doped materials. We show that the g-factors of doped WSe2 monolayers are enhanced by screened-exchange interactions resulting from magnetic-field-induced changes in band occupancies. Our interaction-enhanced g-factors g* agree well with experiment. Unlike traditional valleytronic materials such as silicon, the enhancement in g-factor vanishes beyond a critical magnetic field Bc achievable in standard laboratories. We identify ranges of g* for which this change in g-factor at Bc leads to a valley-filling instability and Landau level alignment, which is important for the study of quantum phase transitions in doped TMDs. We further demonstrate how to tune the g-factors and optimize the valley-polarization for the valley Hall effect.


2021 ◽  
Author(s):  
Ginestra Bianconi

Higher-order networks describe the many-body interactions of a large variety of complex systems, ranging from the the brain to collaboration networks. Simplicial complexes are generalized network structures which allow us to capture the combinatorial properties, the topology and the geometry of higher-order networks. Having been used extensively in quantum gravity to describe discrete or discretized space-time, simplicial complexes have only recently started becoming the representation of choice for capturing the underlying network topology and geometry of complex systems. This Element provides an in-depth introduction to the very hot topic of network theory, covering a wide range of subjects ranging from emergent hyperbolic geometry and topological data analysis to higher-order dynamics. This Elements aims to demonstrate that simplicial complexes provide a very general mathematical framework to reveal how higher-order dynamics depends on simplicial network topology and geometry.


2021 ◽  
Author(s):  
Cong Huy Pham ◽  
Rebecca Lindsey ◽  
Laurence Fried ◽  
Nir Goldman

There exists a great need for computationally efficient quantum simulation approaches that can achieve an accuracy similar to high-level theories while exhibiting a wide degree of transferability. In this regard, we have leveraged a machine-learned force field based on Chebyshev polynomials to determine Density Functional Tight Binding (DFTB) models for organic materials. The benefit of our approach is two-fold: (1) many-body interactions can be corrected for in a systematic and rapidly tunable process, and (2) high-level quantum accuracy for a broad range of compounds can be achieved with ∼0.3% of data required for one advanced deep learning potential (ANI- 1x). In addition, the total number of data points in our training set is less than one half of that used for a recent DFTB-neural network model (trained on a separate dataset). Validation tests of our DFTB model against energy and vibrational data for gas-phase molecules for additional quantum datasets shows strong agreement with reference data from either hybrid density-functional theory, coupled-cluster calculations, or experiments. Preliminary testing on graphite and diamond successfully reproduce condensed phase structures. The models developed in this work, in principle, can retain most of the accuracy of quantum-based methods at any level of theory with relatively small training sets. Our efforts can thus allow for high throughput physical and chemical predictions with up to coupled-cluster accuracy for materials that are computationally intractable with standard approaches.


2021 ◽  
Author(s):  
Ananth Govind Rajan

The combined first and second law of thermodynamics for a closed system is written as dE=TdS - PdV, where E is the internal energy, S is the entropy, V is the volume, T is the temperature, and P is the pressure of the system. This equation forms the basis for understanding physical phenomena ranging from heat engines to chemical reactors to biological systems. In this work, we present a pedagogical approach to obtain the combined first and second law of thermodynamics beginning with the principles of classical statistical mechanics, thereby establishing a fundamental link between energy conservation, heat, work, and entropy. We start with Boltzmann's entropy formula and use differential calculus to establish this link. Some new aspects of this work include the use of the microcanonical ensemble, which is typically considered to be intractable, to write the partition function for a general system of matter; deriving the average of the inverse kinetic energy, which appears in the microcanonical formulation of the combined first and second law, and showing that it is equal to the inverse of the average kinetic energy; obtaining an expression for the pressure of a system involving many-body interactions; and introducing the system pressure in the combined first and second law via Clausius's virial theorem. Overall, this work informs the derivation of fundamental thermodynamic relations from an understanding of classical statistical mechanics. The material presented herein could be incorporated into senior undergraduate/graduate-level courses in statistical thermodynamics and/or molecular simulations.


2021 ◽  
Vol 130 (14) ◽  
pp. 143105
Author(s):  
Guangbiao Xiang ◽  
Yanwen Wu ◽  
Xiaona Miao ◽  
Yushuang Li ◽  
Jiancai Leng ◽  
...  

2021 ◽  
Author(s):  
Qihua Xiong ◽  
Andres Granados del Aguila ◽  
Yi Wong ◽  
Xue Liu ◽  
Antonio Fieramosca ◽  
...  

Abstract Condensation of a dilute Bose gas of excitons (coupled electron-hole pairs) in a direct bandgap semiconductor was first theoretically predicted in 19681. This exotic state of matter is expected to exhibit spectacular non-linear properties, such as superradiance and superfluidity. However, direct experimental observation of condensation of optically active excitons in conventional semiconductors has been hindered by their short lifetimes and weak collective excitonic interactions. Here, we have experimentally realized the condensation of short-lived excitons in a direct-bandgap, atomically-thin MoS2 semiconductor. The signature is the anomalous transport of the fast-expanding exciton density, originating from a thermalized dilute gas generated under the laser spot. Below the critical temperature Tc~150 K, the exciton liquid propagates over ultra-long distances (at least 60 micrometers) with record speed in a solid-state system of 1.8*10^7 m/s (~6% the speed of light), fuelled by the unconventionally strong repulsions among excitons. The condensation is controlled by many-body interactions in the gas mixture of excitons (bosons) and free-carriers (fermions) via an electrical backgate. Our results demonstrate electrostatic doping as a simple approach for the investigation of correlated states of matter at high-temperatures, excitonic circuitry and spin-valley Hall devices mediated by exciton superfluids in semiconducting monolayers.


2021 ◽  
Vol 118 (40) ◽  
pp. e2020941118
Author(s):  
Yaqing Zhang ◽  
Jiaojian Shi ◽  
Xian Li ◽  
Stephen L. Coy ◽  
Robert W. Field ◽  
...  

Because of their central importance in chemistry and biology, water molecules have been the subject of decades of intense spectroscopic investigations. Rotational spectroscopy of water vapor has yielded detailed information about the structure and dynamics of isolated water molecules, as well as water dimers and clusters. Nonlinear rotational spectroscopy in the terahertz regime has been developed recently to investigate the rotational dynamics of linear and symmetric-top molecules whose rotational energy levels are regularly spaced. However, it has not been applied to water or other lower-symmetry molecules with irregularly spaced levels. We report the use of recently developed two-dimensional (2D) terahertz rotational spectroscopy to observe high-order rotational coherences and correlations between rotational transitions that were previously unobservable. The results include two-quantum (2Q) peaks at frequencies that are shifted slightly from the sums of distinct rotational transitions on two different molecules. These results directly reveal the presence of previously unseen metastable water complexes with lifetimes of 100 ps or longer. Several such peaks observed at distinct 2Q frequencies indicate that the complexes have multiple preferred bimolecular geometries. Our results demonstrate the sensitivity of rotational correlations measured in 2D terahertz spectroscopy to molecular interactions and complexation in the gas phase.


Sign in / Sign up

Export Citation Format

Share Document