flat plates
Recently Published Documents


TOTAL DOCUMENTS

1465
(FIVE YEARS 176)

H-INDEX

53
(FIVE YEARS 7)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7683
Author(s):  
Denis Nazarov ◽  
Aida Rudakova ◽  
Evgenii Borisov ◽  
Anatoliy Popovich

Three-dimensional printed nitinol (NiTi) alloys have broad prospects for application in medicine due to their unique mechanical properties (shape memory effect and superplasticity) and the possibilities of additive technologies. However, in addition to mechanical properties, specific physicochemical characteristics of the surface are necessary for successful medical applications. In this work, a comparative study of additively manufactured (AM) NiTi samples etched in H2SO4/H2O2, HCl/H2SO4, and NH4OH/H2O2 mixtures was performed. The morphology, topography, wettability, free surface energy, and chemical composition of the surface were studied in detail. It was found that etching in H2SO4/H2O2 practically does not change the surface morphology, while HCl/H2SO4 treatment leads to the formation of a developed morphology and topography. In addition, exposure of nitinol to H2SO4/H2O2 and HCl/H2SO4 contaminated its surface with sulfur and made the surface wettability unstable in air. Etching in NH4OH/H2O2 results in surface cracking and formation of flat plates (10–20 microns) due to the dissolution of titanium, but clearly increases the hydrophilicity of the surface (values of water contact angles are 32–58°). The etch duration (30 min or 120 min) significantly affects the morphology, topography, wettability and free surface energy for the HCl/H2SO4 and NH4OH/H2O2 etched samples, but has almost no effect on surface composition.


Author(s):  
S Sindagi ◽  
R Vijayakumar ◽  
B K Saxena

The reduction of ship’s resistance is one of the most effective way to reduce emissions, operating costs and to improve EEDI. It is reported that, for slow moving vessels, the frictional drag accounts for as much as 80% of the total drag, thus there is a strong demand for the reduction in the frictional drag. The use of air as a lubricant, known as Micro Bubble Drag Reduction, to reduce that frictional drag is an active research topic. The main focus of authors is to present the current scenario of research carried out worldwide along with numerical simulation of air injection in a rectangular channel. Latest developments in this field suggests that, there is a potential reduction of 80% & 30% reduction in frictional drag in case of flat plates and ships respectively. Review suggests that, MBDR depends on Gas or Air Diffusion which depends on, Bubble size distributions and coalescence and surface tension of liquid, which in turn depends on salinity of water, void fraction, location of injection points, depth of water in which bubbles are injected. Authors are of opinion that, Microbubbles affect the performance of Propeller, which in turn decides net savings in power considering power required to inject Microbubbles. Moreover, 3D numerical investigations into frictional drag reduction by microbubbles were carried out in Star CCM+ on a channel for different flow velocities, different void fraction and for different cross sections of flow at the injection point. This study is the first of its kind in which, variation of coefficient of friction both in longitudinal as well as spanwise direction were studied along with actual localised variation of void fraction at these points. From the study, it is concluded that, since it is a channel flow and as the flow is restricted in confined region, effect of air injection is limited to smaller area in spanwise direction as bubbles were not escaping in spanwise direction.


2021 ◽  
Vol 11 (6) ◽  
pp. 7853-7860
Author(s):  
A. A. Abdulhussein ◽  
M. H. Al-Sherrawi

In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased by 41 to 77% when steel collars were used. The experimental results were in good agreement with the numerical analysis acquired with the ABAQUS software.


2021 ◽  
Author(s):  
Bastav Borah ◽  
Anand Verma ◽  
Vinayak Kulkarni ◽  
Ujjwal K. Saha

Abstract Vortex shedding phenomenon leads to a number of different features such as flow induced vibrations, fluid mixing, heat transfer and noise generation. With respect to aerodynamic application, the intensity of vortex shedding and the size of vortices play an essential role in the generation of lift and drag forces on an airfoil. The flat plates are known to have a better lift-to-drag ratio than conventional airfoils at low Reynolds number (Re). A better understanding of the shedding behavior will help aerodynamicists to implement flat plates at low Re specific applications such as fixed-wing micro air vehicle (MAV). In the present study, the shedding of vortices in the wake of a flat plate at low incidence has been studied experimentally in a low-speed subsonic wind tunnel at a Re of 5 × 104. The velocity field in the wake of the plate is measured using a hot wire anemometer. These measurements are taken at specific points in the wake across the flow direction and above the suction side of the flat plate. The velocity field is found to oscillate with one dominant frequency of fluctuation. The Strouhal number (St), calculated from this frequency, is computed for different angles of attack (AoA). The shedding frequency of vortices from the trailing edge of the flat plate has a general tendency to increase with AoA. In this paper, the generation and subsequent shedding of leading edge and trailing edge vortices in the wake of a flat plate are discussed.


iScience ◽  
2021 ◽  
pp. 103565
Author(s):  
Primož Poredoš ◽  
Nada Petelin ◽  
Boris Vidrih ◽  
Tilen Žel ◽  
Qiuming Ma ◽  
...  
Keyword(s):  

Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121511
Author(s):  
Ariff Magdoom Mahuthannan ◽  
Yedhu Krishna ◽  
Gaetano Magnotti ◽  
William L. Roberts ◽  
Deanna A. Lacoste

Author(s):  
Michio Murase ◽  
Yoichi Utanohara ◽  
Akio Tomiyama

Abstract The objective of this study was to present a prediction method for condensation heat transfer in the presence of non-condensable gas (air or nitrogen) for CFD (computational fluid dynamics) analyses, where physical quantities in the computational cells in contact with the structural wall are generally used. First by using existing temperature distributions T(y) in the turbulent boundary layer along a flat plate as functions of the distance y from the condensation surface, we evaluated the distribution of condensation heat flux qc,pre(y) from the gradient of steam concentration, we derived a modification factor η(y+) as a function of the dimensionless distance y+ to obtain a good agreement with qc,cal calculated by the qc correlation defined by using the bulk quantities; and we obtained qc,mod(y)/qc,cal = 0.90-1.10 for the region of y+ > 17. Second we modified the local Sherwood number Sh(x) for flat plates for the boundary layer thickness d and obtained the function Sh(d). An existing qc correlation for flat plates as a function of Sh(d) was applied to predict the distribution of the local value qc,pre(y), and qc,pre(y)/qc,cal = 0.95-1.15 in the best case was obtained for the region of y+ > 30. Finally a correlation of the local Sherwood number Sh(y) was derived from the temperature distributions T(y) as a function of the local Reynolds number Re(y).


Author(s):  
Ekkachai Yooprasertchai ◽  
Mawin Piamkulvanit ◽  
Chanathip Srithong ◽  
Teerathamrong Sukcharoen ◽  
Raktipong Sahamitmongkol

2021 ◽  
pp. 549-561
Author(s):  
P. P. Dutta ◽  
P. Goswami ◽  
A. Sharma ◽  
Polash P. Dutta ◽  
M. G. Baruah

Sign in / Sign up

Export Citation Format

Share Document