proprioceptive function
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 27)

H-INDEX

16
(FIVE YEARS 1)

The Knee ◽  
2021 ◽  
Vol 33 ◽  
pp. 49-57
Author(s):  
Vanessa Knust Coelho ◽  
Bruno Senos Queiroz Gomes ◽  
Thiago Jambo Alves Lopes ◽  
Leticia Amaral Corrêa ◽  
Gustavo Felicio Telles ◽  
...  

NeuroSci ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 353-371
Author(s):  
Devan E. Atkins ◽  
Kimberly L. Bosh ◽  
Grace W. Breakfield ◽  
Sydney E. Daniels ◽  
Makayla J. Devore ◽  
...  

Proprioception of all animals is important in being able to have coordinated locomotion. Stretch activated ion channels (SACs) transduce the mechanical force into electrical signals in the proprioceptive sensory endings. The types of SACs vary among sensory neurons in animals as defined by pharmacological, physiological and molecular identification. The chordotonal organs within insects and crustaceans offer a unique ability to investigate proprioceptive function. The effects of the extracellular environment on neuronal activity, as well as the function of associated SACs are easily accessible and viable in minimal saline for ease in experimentation. The effect of extracellular [Ca2+] on membrane properties which affect voltage-sensitivity of ion channels, threshold of action potentials and SACs can be readily addressed in the chordotonal organ in crab limbs. It is of interest to understand how low extracellular [Ca2+] enhances neural activity considering the SACs in the sensory endings could possibly be Ca2+ channels and that all neural activity is blocked with Mn2+. It is suggested that axonal excitability might be affected independent from the SAC activity due to potential presence of calcium activated potassium channels (K(Ca)) and the ability of Ca2+ to block voltage gated Na+ channels in the axons. Separating the role of Ca2+ on the function of the SACs and the excitability of the axons in the nerves associated with chordotonal organs is addressed. These experiments may aid in understanding the mechanisms of neuronal hyperexcitability during hypocalcemia within mammals.


2021 ◽  
Author(s):  
Julien Zaldivar ◽  
François Lechanoine ◽  
Bernard Krummenacher ◽  
Rivus Ferreira Arruda ◽  
Lukas Bobinski ◽  
...  

Abstract Background Degenerative cervical myelopathy (DCM) is characterized by progressive deterioration in spinal cord function. Its evaluation requires subjective clinical examination with wide inter-observer variability. Objective quantification of spinal cord function remains imprecise, even though validated myelopathy-grading scales have emerged and are now widely used. We created a Smartphone App with the aim of quantifying accurately and reliably spinal cord dysfunction using a 5-minute Test. Methods A patient suffering from DCM was clinically evaluated before surgery, at 3 and 6 months follow-up after surgical decompression of the cervical spinal cord. Standard scores (Nurick grade, mJOA score) were documented at these time points. A 5-minute motor and proprioceptive performance test aided by a smartphone with the N-outcome app was also performed. Results Motor performance in rapid alternating movements and finger tapping improved in correlation with improvements in standard grading scale scores. Clinical improvements were seen in maximum reflex acceleration and in Romberg testing which showed less closed/open eyes variation, suggesting pyramidal and proprioceptive function recovery. Conclusions We demonstrate that using a smartphone app as an adjunct to clinical evaluation of compressive myelopathy is feasible and potentially useful. The results correlate with the results of clinical assessment obtained by standard validated myelopathy scores.


Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract Background Due to disrupted motor and proprioceptive function, lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in presence of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on their non-amputated and amputated side during slow walking. Methods Fourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases on their non-amputated or amputated sides. Results When outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly larger displacement of center of mass. Conclusions Results of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response.


Author(s):  
I-Ling Yeh ◽  
Jessica Holst-Wolf ◽  
Naveen Elangovan ◽  
Anna Vera Cuppone ◽  
Kamakshi Lakshminarayan ◽  
...  

Abstract Background Proprioceptive deficits after stroke are associated with poor upper limb function, slower motor recovery, and decreased self-care ability. Improving proprioception should enhance motor control in stroke survivors, but current evidence is inconclusive. Thus, this study examined whether a robot-aided somatosensory-based training requiring increasingly accurate active wrist movements improves proprioceptive acuity as well as motor performance in chronic stroke. Methods Twelve adults with chronic stroke completed a 2-day training (age range: 42–74 years; median time-after-stroke: 12 months; median Fugl–Meyer UE: 65). Retention was assessed at Day 5. Grasping the handle of a wrist-robotic exoskeleton, participants trained to roll a virtual ball to a target through continuous wrist adduction/abduction movements. During training vision was occluded, but participants received real-time, vibro-tactile feedback on their forearm about ball position and speed. Primary outcome was the just-noticeable-difference (JND) wrist position sense threshold as a measure of proprioceptive acuity. Secondary outcomes were spatial error in an untrained wrist tracing task and somatosensory-evoked potentials (SEP) as a neural correlate of proprioceptive function. Ten neurologically-intact adults were recruited to serve as non-stroke controls for matched age, gender and hand dominance (age range: 44 to 79 years; 6 women, 4 men). Results Participants significantly reduced JND thresholds at posttest and retention (Stroke group: pretest: mean: 1.77° [SD: 0.54°] to posttest mean: 1.38° [0.34°]; Control group: 1.50° [0.46°] to posttest mean: 1.45° [SD: 0.54°]; F[2,37] = 4.54, p = 0.017, ηp2 = 0.20) in both groups. A higher pretest JND threshold was associated with a higher threshold reduction at posttest and retention (r = − 0.86, − 0.90, p ≤ 0.001) among the stroke participants. Error in the untrained tracing task was reduced by 22 % at posttest, yielding an effect size of w = 0.13. Stroke participants exhibited significantly reduced P27-N30 peak-to-peak SEP amplitude at pretest (U = 11, p = 0.03) compared to the non-stroke group. SEP measures did not change systematically with training. Conclusions This study provides proof-of-concept that non-visual, proprioceptive training can induce fast, measurable improvements in proprioceptive function in chronic stroke survivors. There is encouraging but inconclusive evidence that such somatosensory learning transfers to untrained motor tasks. Trial registration Clinicaltrials.gov; Registration ID: NCT02565407; Date of registration: 01/10/2015; URL: https://clinicaltrials.gov/ct2/show/NCT02565407.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11301
Author(s):  
Kristof Vandael ◽  
Tasha R. Stanton ◽  
Ann Meulders

Background Proprioception refers to the perception of motion and position of the body or body segments in space. A wide range of proprioceptive tests exists, although tests dynamically evaluating sensorimotor integration during upper limb movement are scarce. We introduce a novel task to evaluate kinesthetic proprioceptive function during complex upper limb movements using a robotic device. We aimed to evaluate the test–retest reliability of this newly developed Dynamic Movement Reproduction (DMR) task. Furthermore, we assessed reliability of the commonly used Joint Reposition (JR) task of the elbow, evaluated the association between both tasks, and explored the influence of visual information (viewing arm movement or not) on performance during both tasks. Methods During the DMR task, participants actively reproduced movement patterns while holding a handle attached to the robotic arm, with the device encoding actual position throughout movement. In the JR task, participants actively reproduced forearm positions; with the final arm position evaluated using an angle measurement tool. The difference between target movement pattern/position and reproduced movement pattern/position served as measures of accuracy. In study 1 (N = 23), pain-free participants performed both tasks at two test sessions, 24-h apart, both with and without visual information available (i.e., vision occluded using a blindfold). In study 2 (N = 64), an independent sample of pain-free participants performed the same tasks in a single session to replicate findings regarding the association between both tasks and the influence of visual information. Results The DMR task accuracy showed good-to-excellent test–retest reliability, while JR task reliability was poor: measurements did not remain sufficiently stable over testing days. The DMR and JR tasks were only weakly associated. Adding visual information (i.e., watching arm movement) had different performance effects on the tasks: it increased JR accuracy but decreased DMR accuracy, though only when the DMR task started with visual information available (i.e., an order effect). Discussion The DMR task’s highly standardized protocol (i.e., largely automated), precise measurement and involvement of the entire upper limb kinetic chain (i.e., shoulder, elbow and wrist joints) make it a promising tool. Moreover, the poor association between the JR and DMR tasks indicates that they likely capture unique aspects of proprioceptive function. While the former mainly captures position sense, the latter appears to capture sensorimotor integration processes underlying kinesthesia, largely independent of position sense. Finally, our results show that the integration of visual and proprioceptive information is not straightforward: additional visual information of arm movement does not necessarily make active movement reproduction more accurate, on the contrary, when movement is complex, vision appears to make it worse.


Author(s):  
Ali Yalfani ◽  
Ahmad Ebrahimi Atri ◽  
Maedeh Taghizadeh Kerman

Background and Purpose: Quadriceps weakness and disruption of proprioceptive function are common after anterior cruciate ligament (ACL) injury and consequently the surgery. Postoperative self-reported outcomes are affected by the preoperative defect. The purpose of this review study was to examine whether preoperative exercises can affect self-reported outcomes. Methods: The study started searching for papers from the PubMed, Scopus, EMBASE, Cochrane, and Web of Sciences databases and extracted the entered studies from 1990 to 2020. Moreover, the terms “ACL preoperative exercise” or “prehabilitation ACL” and “self-reported outcomes” or “postoperative outcomes” were used in the search titles, where 906 papers were finally found. Then, according to the main topic of the present study, and the inclusion and exclusion criteria, 10 papers met the inclusion criteria of the review. The methodological quality of the studies was also assessed through the Physiotherapy Evidence Database (PEDro) and Critical Appraisal Skills Program (CASP). Results: The presentation of several preoperative intervention programs (traditional, strength, and neuromuscular training) significantly enhanced self-reported knee function in men and women after surgery in the short and long-term. The mean PEDro score for seven randomized controlled trial studies was found to be 6.3, which showed the moderate quality of the methodology. Moreover, the score for three cohort studies using the CASP scale was 7 out of 12. Conclusion: Preoperative rehabilitation consisting of progressive strengthening and neuromuscular training, followed by a criterion-based postoperative rehabilitation program, had greater functional outcomes after Anterior Cruciate ligament reconstruction. Preoperative rehabilitation should be considered as an addition to the standard of care to maximize functional outcomes after ACLR.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jules Bernard-Espina ◽  
Mathieu Beraneck ◽  
Marc A. Maier ◽  
Michele Tagliabue

For reaching and grasping, as well as for manipulating objects, optimal hand motor control arises from the integration of multiple sources of sensory information, such as proprioception and vision. For this reason, proprioceptive deficits often observed in stroke patients have a significant impact on the integrity of motor functions. The present targeted review attempts to reanalyze previous findings about proprioceptive upper-limb deficits in stroke patients, as well as their ability to compensate for these deficits using vision. Our theoretical approach is based on two concepts: first, the description of multi-sensory integration using statistical optimization models; second, on the insight that sensory information is not only encoded in the reference frame of origin (e.g., retinal and joint space for vision and proprioception, respectively), but also in higher-order sensory spaces. Combining these two concepts within a single framework appears to account for the heterogeneity of experimental findings reported in the literature. The present analysis suggests that functional upper limb post-stroke deficits could not only be due to an impairment of the proprioceptive system per se, but also due to deficiencies of cross-references processing; that is of the ability to encode proprioceptive information in a non-joint space. The distinction between purely proprioceptive or cross-reference-related deficits can account for two experimental observations: first, one and the same patient can perform differently depending on specific proprioceptive assessments; and a given behavioral assessment results in large variability across patients. The distinction between sensory and cross-reference deficits is also supported by a targeted literature review on the relation between cerebral structure and proprioceptive function. This theoretical framework has the potential to lead to a new stratification of patients with proprioceptive deficits, and may offer a novel approach to post-stroke rehabilitation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yizhao Wang ◽  
Huiying Zhu ◽  
Naveen Elangovan ◽  
Leonardo Cappello ◽  
Giulio Sandini ◽  
...  

AbstractProprioceptive training is a neurorehabilitation approach known to improve proprioceptive acuity and motor performance of a joint/limb system. Here, we examined if such learning transfers to the contralateral joints. Using a robotic exoskeleton, 15 healthy, right-handed adults (18–35 years) trained a visuomotor task that required making increasingly small wrist movements challenging proprioceptive function. Wrist position sense just-noticeable-difference thresholds (JND) and spatial movement accuracy error (MAE) in a wrist-pointing task that was not trained were assessed before and immediately as well as 24 h after training. The main results are: first, training reduced JND thresholds (− 27%) and MAE (− 33%) in the trained right wrist. Sensory and motor gains were observable 24 h after training. Second, in the untrained left wrist, mean JND significantly decreased (− 32%) at posttest. However, at retention the effect was no longer significant. Third, motor error at the untrained wrist declined slowly. Gains were not significant at posttest, but MAE was significantly reduced (− 27%) at retention. This study provides first evidence that proprioceptive-focused visuomotor training can induce proprioceptive and motor gains not only in the trained joint but also in the contralateral, homologous joint. We discuss the possible neurophysiological mechanism behind such sensorimotor transfer and its implications for neurorehabilitation.


2021 ◽  
Author(s):  
Andrej Olenšek ◽  
Matjaž Zadravec ◽  
Helena Burger ◽  
Zlatko Matjačić

Abstract BackgroundDue to disrupted motor and proprioceptive function lower limb amputation imposes considerable challenges associated with balance and greatly increases risk of falling in case of perturbations during walking. The aim of this study was to investigate dynamic balancing responses in unilateral transtibial amputees when they were subjected to perturbing pushes to the pelvis in outward direction at the time of foot strike on non-amputated and amputated side during slow walking.MethodsFourteen subjects with unilateral transtibial amputation and nine control subjects participated in the study. They were subjected to perturbations that were delivered to the pelvis at the time of foot strike of either the left or right leg. We recorded trajectories of center of pressure and center of mass, durations of in-stance and stepping periods as well as ground reaction forces. Statistical analysis was performed to determine significant differences in dynamic balancing responses between control subjects and subjects with amputation when subjected to outward-directed perturbation upon entering stance phases with non-amputated or amputated side.ResultsWhen outward-directed perturbations were delivered at the time of foot strike of the non-amputated leg, subjects with amputation were able to modulate center of pressure and ground reaction force similarly as control subjects which indicates application of in-stance balancing strategies. On the other hand, there was a complete lack of in-stance response when perturbations were delivered when the amputated leg entered the stance phase. Subjects with amputations instead used the stepping strategy and adjusted placement of the non-amputated leg in the ensuing stance phase to make a cross-step. Such response resulted in significantly higher displacement of center of mass. ConclusionsResults of this study suggest that due to the absence of the COP modulation mechanism, which is normally supplied by ankle motor function, people with unilateral transtibial amputation are compelled to choose the stepping strategy over in-stance strategy when they are subjected to outward-directed perturbation on the amputated side. However, the stepping response is less efficient than in-stance response. To improve their balancing responses to unexpected balance perturbation people fitted with passive transtibial prostheses should undergo perturbation-based balance training during clinical rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document