sic wafer
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 43)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
XIAOZHE YANG ◽  
Xu Yang ◽  
Haiyang Gu ◽  
Kentaro Kawai ◽  
Kenta Arima ◽  
...  

Abstract Slurryless electrochemical mechanical polishing (ECMP) is very effective in the polishing of silicon carbide (SiC) wafers. To achieve a high material removal rate (MRR) of SiC wafer using ECMP with low electrical energy loss, charge utilization efficiency in the anodic oxidation of the SiC surface was investigated and the underlying mechanism was clarified by modeling the anodic oxidation system of SiC in 1 wt% NaCl aqueous solution. The charge utilization efficiency in the anodic oxidation of SiC was found to be constant when the current density was less than 20 mA/cm2 and significantly decreased when the current density was greater than 30 mA/cm2, resulting in a significant reduction in the MRR. Modeling of the anodic oxidation system indicates that the charge utilization efficiency depended on the potential applied on the SiC surface: the oxidation of SiC occupied the dominant position in the anodizing system when the potential is lower than 25 V vs Ag|AgCl, charge utilization efficiency greatly decreased when the applied potential was greater than 25 V owing to the occurrence of oxidations of the H2O and Cl-. This research provides both a theoretical and practical foundation for using ECMP to polish SiC wafers.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1575
Author(s):  
Wenting Zhang ◽  
Caorui Zhang ◽  
Junmin Wu ◽  
Fei Yang ◽  
Yunlai An ◽  
...  

SiC direct bonding using O2 plasma activation is investigated in this work. SiC substrate and n− SiC epitaxy growth layer are activated with an optimized duration of 60s and power of the oxygen ion beam source at 20 W. After O2 plasma activation, both the SiC substrate and n− SiC epitaxy growth layer present a sufficient hydrophilic surface for bonding. The two 4-inch wafers are prebonded at room temperature followed by an annealing process in an atmospheric N2 ambient for 3 h at 300 °C. The scanning results obtained by C-mode scanning acoustic microscopy (C-SAM) shows a high bonding uniformity. The bonding strength of 1473 mJ/m2 is achieved. The bonding mechanisms are investigated through interface analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Oxygen is found between the two interfaces, which indicates Si–O and C–O are formed at the bonding interface. However, a C-rich area is also detected at the bonding interface, which reveals the formation of C-C bonds in the activated SiC surface layer. These results show the potential of low cost and efficient surface activation method for SiC direct bonding for ultrahigh-voltage devices applications.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7320
Author(s):  
Dong Shi ◽  
Tianchen Zhao ◽  
Tengfei Ma ◽  
Jinping Pan

Silicon carbide (SiC) devices have become one of the key research directions in the field of power electronics. However, due to the limitation of the SiC wafer growth process and processing capacity, SiC devices, such as SiC MOSFET (Metal-oxide-semiconductor Field-effect Transistor), are facing the problems of high cost and unsatisfied performance. To improve the precise machinability of single-crystal SiC wafer, this paper proposed a new hybrid process. Firstly, we developed an ultrasonic vibration-assisted device, by which ultrasonic-assisted lapping and ultrasonic-assisted CMP (chemical mechanical polishing) for SiC wafer were fulfilled. Secondly, a novel three-step ultrasonic-assisted precise machining route was proposed. In the first step, ultrasonic lapping using a cast iron disc was conducted, which quickly removed large surface damages with a high MRR (material removal rate) of 10.93 μm/min. In the second step, ultrasonic lapping using a copper disc was conducted, which reduced the residual surface defects with a high MRR of 6.11 μm/min. In the third step, ultrasonic CMP using a polyurethane pad was conducted, which achieved a smooth and less damaged surface with an MRR of 1.44 μm/h. These results suggest that the ultrasonic-assisted hybrid process can improve the precise machinability of SiC, which will hopefully achieve high-efficiency and ultra-precision machining.


Author(s):  
Jung Gon Kim ◽  
Woo Sik Yoo ◽  
Woo Yeon Kim ◽  
Won Jae Lee

Abstract Two-inch diameter 6H-SiC wafers were sliced from a SiC ingot and the wafers were ground and polished using different diamond slurries (1 m and 0.1 m in particles size) to investigate their dependence on wetting on surface roughness (Ra) and polarity using precisely dispensed de-ionized (DI) water drops. The Ra of the Si-face (0001) SiC wafer, after grinding and polishing, was 5.6 and 1.6 nm, respectively, as measured by atomic force microscopy (AFM). For C-face (000-1) SiC wafers, the Ra was 7.2 nm after grinding and 3.3 nm after polishing. The average contact angle measurement of the SiC wafers after final polishing showed clear differences between surface polarity; the contact angle for the Si-face (0001) was ~7o greater than that for the C-face (000-1). The difference in contact angles between the Si-face (0001) and the C-face (000-1) tends to increase as the reduction of surface roughness approaches the final stage of polishing. The uniformity of Raman peak intensity in the folded transverse optical phonon band at ~780 cm-1 in scanned areas correlated well with the surface roughness measured by AFM. The contact angle measurement can be used as a convenient surface polarity and surface roughness testing technique for SiC wafers.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1331
Author(s):  
Zhe Zhang ◽  
Zhidong Wen ◽  
Haiyan Shi ◽  
Qi Song ◽  
Ziye Xu ◽  
...  

SiC wafers, due to their hardness and brittleness, suffer from a low feed rate and a high failure rate during the dicing process. In this study, a novel dual laser beam asynchronous dicing method (DBAD) is proposed to improve the cutting quality of SiC wafers, where a pulsed laser is firstly used to introduce several layers of micro-cracks inside the wafer, along the designed dicing line, then a continuous wave (CW) laser is used to generate thermal stress around cracks, and, finally, the wafer is separated. A finite-element (FE) model was applied to analyze the behavior of CW laser heating and the evolution of the thermal stress field. Through experiments, SiC samples, with a thickness of 200 μm, were cut and analyzed, and the effect of the changing of continuous laser power on the DBAD system was also studied. According to the simulation and experiment results, the effectiveness of the DBAD method is certified. There is no more edge breakage because of the absence of the mechanical breaking process compared with traditional stealth dicing. The novel method can be adapted to the cutting of hard-brittle materials. Specifically for materials thinner than 200 μm, the breaking process in the traditional SiC dicing process can be omitted. It is indicated that the dual laser beam asynchronous dicing method has a great engineering potential for future SiC wafer dicing applications.


2021 ◽  
Author(s):  
Ting Liang ◽  
Wangwang Li ◽  
Cheng Lei ◽  
Yongwei Li ◽  
Zhiqiang Li ◽  
...  

AbstractThis paper presents an all-SiC fiber-optic Fabry-Perot (FP) pressure sensor based on the hydrophilic direct bonding technology for the applications in the harsh environment. The operating principle, fabrication, interface characteristics, and pressure response test of the proposed all-SiC pressure sensor are discussed. The FP cavity is formed by hermetically direct bonding of two-layer SiC wafers, including a thinned SiC diaphragm and a SiC wafer with an etched cavity. White light interference is used for the detection and demodulation of the sensor pressure signals. Experimental results demonstrate the sensing capabilities for the pressure range up to 800 kPa. The all-SiC structure without any intermediate layer can avoid the sensor failure caused by the thermal expansion coefficient mismatch and therefore has a great potential for pressure measurement in high temperature environments.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110449
Author(s):  
Kaiping Feng ◽  
Tianchen Zhao ◽  
Binghai Lyu ◽  
Zhaozhong Zhou

To eliminate the deep scratches on the 4H-SiC wafer surface in the grinding process, a PVA/PF composite sol-gel diamond wheel was proposed. Diamond and fillers are sheared and dispersed in the polyvinyl alcohol-phenolic resin composite sol glue, repeatedly frozen at a low temperature of −20°C to gel, then 180°C sintering to obtain the diamond wheel. Study shows that the molecular chain of polyvinyl alcohol-phenolic resin is physically cross-linked to form gel under low-temperature conditions. Tested by mechanical property testing machines, microhardness tester, and SEM. The results show that micromorphology is more uniform, the strength of the sol-gel diamond wheel is higher, the hardness uniformity is better than that of the hot pressing diamond wheel. Grinding experiments of 4H-SiC wafer were carried out with the prepared sol-gel diamond wheel. The influence of grinding speed, feed rate, and grinding depth on the surface roughness was investigated. The results showed that by using the sol-gel diamond wheel, the surface quality of 4H-SiC wafer with an average surface roughness Ra 6.42 nm was obtained under grinding wheel speed 7000 r/min, grinding feed rate 6 µm/min, and grinding depth 15 µm, the surface quality was better than that of using hot pressing diamond wheel.


Sign in / Sign up

Export Citation Format

Share Document