eam potential
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 14)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Ning Wei ◽  
Ai-Qiang Shi ◽  
Zhi-Hui Li ◽  
Bing-Xian Ou ◽  
Si-Han Zhao ◽  
...  

Abstract The plastic deformation properties of cylindrical pre-void Aluminum-Magnesium (Al-Mg) alloy under uniaxial tension are explored using molecular dynamics simulations with embedded atom method (EAM) potential. The factors of Mg content, void size, and temperature are considered. The results show that the void fraction decreases with increasing Mg in the plastic deformation, and it is almost independent of Mg content when Mg is beyond 5%. Both Mg contents and stacking faults around the void affect the void growth. These phenomena are explained by the dislocation density of the sample and stacking faults distribution around the void. The variation trends of yield stress caused by void size are in good agreement with Lubarda model. Moreover, temperature effects are explored, the yield stress and Young's modulus obviously decrease with temperature. Our results may enrich and facilitate the understanding of the plastic mechanism of Al-Mg with defects or other alloys.


2021 ◽  
Vol 8 (8) ◽  
pp. 210501
Author(s):  
Lan Zhan ◽  
Mingzhong Wu ◽  
Xiangge Qin

In this paper, based on the embedded atom method (EAM) potential, molecular dynamics simulations of the solidification process of Al–4 at.%Cu alloy is carried out. The Al–Cu alloy melt is placed at different temperatures for isothermal solidification, and each stage of the entire solidification process is tracked, including homogeneous nucleation, nucleus growth, grain coarsening and microstructure evolution. In the nucleation stage, the transition from high temperature to low temperature manifests a change from spontaneous nucleation mode to divergent nucleation mode. The critical nucleation temperature of the Al–Cu alloy is determined to be about 0.42 T m ( T m is the melting point of Al–4 at.%Cu) by calculating the nucleation rate and the crystal nucleus density. In the nucleus growth stage, two ways of growing up are observed, that is, a large crystal nucleus will absorb a smaller heterogeneous crystal nucleus, and two very close crystal nuclei will merge. In the microstructure evolution of the isothermally solidified Al–Cu alloy, it is emerged that the interior of all nanocrystalline grains are long-period stacking structure composed of face centred cubic (FCC) and hexagonal close-packed (HCP). These details provide important information for the production of Al–Cu binary alloy nano-polycrystalline products.


2021 ◽  
Author(s):  
Karthik Narayan

This thesis presents a powerful numerical fitting procedure for generating Embedded Atom Method (EAM) inter-atomic potentials for pure Face Centred Cubic (FCC) and Body Centred Cubic (BCC) metals. The numerical fitting procedure involves assuming a reasonable parameterized form for a portion of the EAM potential, and then fitting the remaining portion to select thermal and elastic properties of the metal. Molecular Dynamics (MD) simulation is used to effect the fitting procedure. The procedure is used to generate an EAM potential for copper, an FCC metal. This resulting EAM potential is used to conduct MD simulations of perfect copper crystals containing voids of different geometries. Following this, a bridged Finite Element-Molecular Dynamics (FE-MD) method is presented, which can be used to simulate large atomic systems much more efficiently than MD simulation alone. The method implements a novel element discretization scheme proposed by the author that is so general that it can be applied to any system of objects interacting with each other via any potential (simple or complex, EAM or otherwise). This bridged FE-MD method is used to reanalyze the voids in the copper crystal lattice. The resulting virial stress increment patterns are found to agree remarkably with the earlier MD simulation results. Furthermore, the bridged FE-MD method is much quicker than the pure MD simulation. These two facts prove the power and usefulness of the bridged FE-MD method, and validate the proposed element discretization scheme


2021 ◽  
Author(s):  
Karthik Narayan

This thesis presents a powerful numerical fitting procedure for generating Embedded Atom Method (EAM) inter-atomic potentials for pure Face Centred Cubic (FCC) and Body Centred Cubic (BCC) metals. The numerical fitting procedure involves assuming a reasonable parameterized form for a portion of the EAM potential, and then fitting the remaining portion to select thermal and elastic properties of the metal. Molecular Dynamics (MD) simulation is used to effect the fitting procedure. The procedure is used to generate an EAM potential for copper, an FCC metal. This resulting EAM potential is used to conduct MD simulations of perfect copper crystals containing voids of different geometries. Following this, a bridged Finite Element-Molecular Dynamics (FE-MD) method is presented, which can be used to simulate large atomic systems much more efficiently than MD simulation alone. The method implements a novel element discretization scheme proposed by the author that is so general that it can be applied to any system of objects interacting with each other via any potential (simple or complex, EAM or otherwise). This bridged FE-MD method is used to reanalyze the voids in the copper crystal lattice. The resulting virial stress increment patterns are found to agree remarkably with the earlier MD simulation results. Furthermore, the bridged FE-MD method is much quicker than the pure MD simulation. These two facts prove the power and usefulness of the bridged FE-MD method, and validate the proposed element discretization scheme


Biosensors ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 37
Author(s):  
Tatiana Zolotoukhina ◽  
Momoko Yamada ◽  
Shingo Iwakura

Surface-enhanced Raman scattering (SERS) nanoprobes have shown tremendous potential in in vivo imaging. The development of single oligomer resolution in the SERS promotes experiments on DNA and protein identification using SERS as a nanobiosensor. As Raman scanners rely on a multiple spectrum acquisition, faster imaging in real-time is required. SERS weak signal requires averaging of the acquired spectra that erases information on conformation and interaction. To build spectral libraries, the simulation of measurement conditions and conformational variations for the nucleotides relative to enhancer nanostructures would be desirable. In the molecular dynamic (MD) model of a sensing system, we simulate vibrational spectra of the cytosine nucleotide in FF2/FF3 potential in the dynamic interaction with the Au20 nanoparticles (NP) (EAM potential). Fourier transfer of the density of states (DOS) was performed to obtain the spectra of bonds in reaction coordinates for nucleotides at a resolution of 20 to 40 cm−1. The Au20 was optimized by ab initio density functional theory with generalized gradient approximation (DFT GGA) and relaxed by MD. The optimal localization of nucleotide vs. NP was defined and the spectral modes of both components vs. interaction studied. Bond-dependent spectral maps of nucleotide and NP have shown response to interaction. The marker frequencies of the Au20—nucleotide interaction have been evaluated.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 25
Author(s):  
Tatiana Zolotoukhina ◽  
Momoko Yamada ◽  
Shingo Iwakura

Surface-enhanced Raman scattering (SERS) nanoprobes have shown tremendous potential in in vivo imaging. The development of single oligomer resolution in the SERS promotes experiments on DNA and protein identification using SERS as a nanobiosensor. As Raman scanners rely on a multiple spectrum acquisition, the faster imaging in real-time is required. SERS weak signal requires averaging of the acquired spectra that erases information on conformation and interaction. To build spectral libraries, the simulation of measurement conditions and conformational variations for the nucleotides relative to enhancer nanostructures would be desirable. In the molecular dynamic (MD) model of a sensing system, we simulate vibrational spectra of the cytosine nucleotide in FF2/FF3 potential in the dynamic interaction with the Au20 nanoparticles (NP) (EAM potential). Fourier transfer of the density of states (DOS) was performed to obtain the spectra of bonds in reaction coordinates for nucleotides at a resolution 20 to 40 cm−1. The Au20 was optimized by ab initio DFT GGA and relaxed by MD. The optimal localization of nucleotide vs. NP was defined and spectral modes of both components vs. interaction studied. Bond-dependent spectral maps of nucleotide and NP have shown response to interaction. The marker frequencies of the Au20—nucleotide interaction have been evaluated.


2020 ◽  
Vol 91 (3) ◽  
pp. 30301
Author(s):  
Hicham El Azrak ◽  
Abdessamad Hassani ◽  
Khalid Sbiaai ◽  
Abdellatif Hasnaoui

We have studied thin film growth of NiAl on Nickel (001) substrate using molecular dynamics simulations (MD) based on the Embedded Atom Method (EAM) potential. An incidence energy of 0.06 eV at 800 K, 900 K and 1000 K was considered. After the deposition process, we have obtained a B2-NiAl structure film with different percentages; 32.6% for the temperature 1000 K, 30% for 900 K and 25% for 800 K. Our investigation has prompt us to analyze the crystalline structure. During the evolution of deposited film, we observe the formation of grains with different orientation, as well as the appearance of vacancies in Ni and Al sublattices and antisites.


2020 ◽  
Vol 30 (4) ◽  
pp. 539-544
Author(s):  
Enlai Yue ◽  
Tao Yu ◽  
Chongyu Wang ◽  
Junping Du

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Yin Fan ◽  
Yang Xiang ◽  
Hui-Shen Shen

Negative Poisson’s ratio (NPR), also known as “auxetic”, is a highly desired property in a wide range of future industry applications. By employing molecular dynamics (MD) simulation, metal matrix nanocomposites reinforced by graphene sheets are studied in this paper. In the simulation, single crystal copper with crystal orientation 1 1 0 is selected as the matrix and an embedded-atom method (EAM) potential is used to describe the interaction of copper atoms. An aligned graphene sheet is selected as reinforcement, and a hybrid potential, namely, the Erhart-Albe potential, is used for the interaction between a pair of carbon atoms. The interaction between the carbon atom and copper atom is approximated by the Lennard-Jones (L-J) potential. The simulation results showed that both graphene and copper matrix possess in-plane NPRs. The temperature-dependent mechanical properties of graphene/copper nanocomposites with in-plane NPRs are obtained for the first time.


Author(s):  
Hanae Chabba ◽  
Driss Dafir

Aluminum alloys development always exit in the manufacturing process. Al/Mg alloys have been attracted significant attention because of their excellent mechanical properties. The microstructural evolution and deformation mechanisms are still challenging issues, and it is hard to observe directly by experimental methods. Accordingly, in this paper atomic simulations are performed to investigate the uniaxial compressive behavior of Al/Mg phases; with different ratio of Mg ranging from 31% to 56%. The compression is at the same strain rate (3.1010 s⁻¹), at the same temperature (300K) and pressure, using embedded atom method (EAM) potential to model the interactions and the deformation behavior between Al and Mg.From these simulations, we get the radial distribution function; the stress–strain responses to describe the elastic and plastic behaviors of β-Al3Mg2, ε-Al30Mg23, Al1Mg1 and γ-Al12Mg17 phases with 31, 41, 50 and 56% of Mg added to pure aluminum, respectively. The mechanical properties, such as Young’s modulus, elasticity limit and rupture pressure, are determined and presented. The engineering equation was used to plot the stress-strain curve for each phase.From the results obtained, the chemical composition has a significant effect on the properties of these phases. The stress-strain behavior comprised elastic, yield, strain softening and strain hardening regions that were qualitatively in agreement with previous simulations and experimental results. These stress-strain diagrams obtained show a rapid increase in stress up to a maximum followed by a gradual drop when the specimen fails by ductile fracture. Under compression, the deformation behavior of β-Al3Mg2 and γ-Al12Mg17 phases is slightly similar. From the results, it was found that ε-Al30Mg23 phase are brittle under uniaxial compressive loading and γ-Al12Mg17 phase is very ductile under the same compressive loading.The engineering stress-strain relationship suggests that β-Al3Mg2 and γ-Al12Mg17 phases have high elasticity limit, ability to resist deformation and also have the advantage of being highly malleable. From this simulation, we also find that the mechanical properties under compressive load of ε-Al30Mg23 phase are evidently less than other phases, which makes it the weakest phase. The obtained results were compared with the previous experimental studies, and generally, there is a good correlation.The Al-Mg system was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator).


Sign in / Sign up

Export Citation Format

Share Document