photovoltaic generators
Recently Published Documents


TOTAL DOCUMENTS

234
(FIVE YEARS 72)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Vol 7 ◽  
pp. 5
Author(s):  
Bernardo de Souza Guimarães ◽  
Lucas Farias ◽  
Delly Oliveira Filho ◽  
Lawrence Kazmerski ◽  
Antonia Sônia A. Cardoso Diniz

This paper examines the performance of solar photovoltaic generators on roofs of residential buildings. The primary focus is the loss of performance due to temperature increase as function of roof material and the distance from the photovoltaic (PV) generator to the roof. A heat transfer model has been developed to predict PV module temperature, and the equations of the model were solved using the Engineering Equation Solver (EES) software. The research modeling correlates the distance of the solar generator to the roof and the roofing material with the temperature variations in the PV generator. There are many models to predict PV module temperature, but this study refines the prediction by the distance from PV module to roof and the roofing material as variables. Optimal combinations of distance and materials that minimize the heating loss in the solar generator leading to increased electrical power generation. Results show an average error of 3%–4% from the temperature predicted by the model to the temperature measured under experimental conditions in Belo Horizonte, Brazil. The minimum roof-module separation required to ensure minimal PV performance loss from heating from the roof is ∼10 cm for red ceramic and cement fiber roofs. For galvanized steel, the optimal distance is between 20 cm and 30 cm. Cement fiber shows the best predicted and measured characteristics for PV-panel roof mounting among the 3-common commercial roofs evaluated in these studies. These investigations were based on roof installations and local materials in Belo Horizonte, Brazil.


Author(s):  
Benlaria Ismail ◽  
Belhadj Mohammed ◽  
Othmane Abdelkhalek ◽  
Sabouni Elhadj

<p>Photovoltaic (PV) systems can be made more efficient by forcing the PV panel to operate at its maximum point power due to the electrical properties of photovoltaic generators, which are substantially non-linear (MPP). This study examines the effectiveness of using a combination of parabolic concentrator Bi-reflector and heat exchanger as a cooling system on the performance of photovoltaic generators to get a photovoltaic/thermal (PV/T) system, and their effect on the direct current (DCDC) converter using matrix laboratory (MATLAB) simulink. The experimental tests were carried out under various temperature values and sun irradiation. The results demonstrated that the use of parabolic Bi-reflectors, to further illumine te the panels, and the use of the cooling system to absorb excess heat to get heat water, could increase and enhances performances of the photovoltaic generator.</p>


Author(s):  
Nelson Rodrigues Silva ◽  
Luis Gustavo Wesz Da Silva ◽  
Marcelo Escobar De Oliveira ◽  
Hugo Xavier Rocha ◽  
Ghunter Paulo Viajante

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7650
Author(s):  
Isaías González ◽  
José María Portalo ◽  
Antonio José Calderón

Photovoltaic (PV) energy is a renewable energy resource which is being widely integrated in intelligent power grids, smart grids, and microgrids. To characterize and monitor the behavior of PV modules, current-voltage (I-V) curves are essential. In this regard, Internet of Things (IoT) technologies provide versatile and powerful tools, constituting a modern trend in the design of sensing and data acquisition systems for I-V curve tracing. This paper presents a novel I-V curve tracer based on IoT open-source hardware and software. Namely, a Raspberry Pi microcomputer composes the hardware level, whilst the applied software comprises mariaDB, Python, and Grafana. All the tasks required for curve tracing are automated: load sweep, data acquisition, data storage, communications, and real-time visualization. Modern and legacy communication protocols are handled for seamless data exchange with a programmable logic controller and a programmable load. The development of the system is expounded, and experimental results are reported to prove the suitability and validity of the proposal. In particular, I-V curve tracing of a monocrystalline PV generator under real operating conditions is successfully conducted.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7418
Author(s):  
Reo Kontani ◽  
Kenji Tanaka ◽  
Yuji Yamada

Distributed energy resources (DERs) play an indispensable role in mitigating global warming. The DERs require flexibility owing to the uncertainty of their power output when connected to the power grid. Recently, blockchain technology has actualized peer-to-peer (P2P) energy markets, promoting efficient and resilient flexibility in the power grid. This study aimed to extract insights about the contribution of the P2P energy markets to ensuring flexibility through analyzing transaction data. The data source was a demonstration project regarding the P2P energy markets conducted from 2019 to 2020 in Urawa-Misono District, Japan. The participants in the project were photovoltaic generators (PVGs), convenience stores (CSs), and residences equipped with battery storage as the only flexibility in the market. We quantitatively analyzed the prices and volumes ordered or transacted by each participant. The execution prices purchased by the residences were lower than those purchased by CSs; the differences between execution prices and order prices of the residences were narrower than those of PVGs and CSs; the lower state-of-charge (SoC) in the storage battery induced the higher purchasing prices. Thus, P2P energy markets, where holding flexibility resulted in the advantageous position, can promote installing flexibility through market mechanisms.


2021 ◽  
Vol 7 ◽  
pp. 491-505
Author(s):  
Kitmo ◽  
Répélé Djidimbélé ◽  
Dieudonné Kaoga Kidmo ◽  
Guy Bertrand Tchaya ◽  
Noël Djongyang

Sign in / Sign up

Export Citation Format

Share Document