static eccentricity
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 47)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Touil Abderrahim ◽  
Babaa Fatima ◽  
Bennis Ouafae ◽  
Kratz Frederic

The present paper addresses a precise and an accurate mathematical model for three-phase squirrel cage induction motors, based on winding function theory. Through an analytical development, a comparative way is presented to separate the signature between the existence of the outer race bearing fault and the static eccentricity concerning the asymmetry of the air gap between the stator and the rotor. This analytical model proposes an effective signature of outer race defect separately from other signatures of static eccentricity. Simulation and experimental results are presented to validate the proposed analytical model.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hong-Chun Jiang ◽  
Yu-Ling He ◽  
Gui-Ji Tang ◽  
Xing-Hua Yuan

This paper comparatively studies the electromagnetic force and mechanical response of the end winding before and after 3 kinds of typical electromechanical faults in turbo-generator. The analytical expression of electromagnetic force of end winding is derived under the composite fault of static eccentricity and rotor interturn short circuit. Meanwhile, the three-dimensional transient finite element simulation is carried on, and the frequency composition and amplitude variation characteristics of the radial, axial, and tangential electromagnetic force are analyzed for the end windings under static eccentricity, rotor interturn short circuit, and composite fault. Therefore, it provides a reference for the vibration wear detection and electromagnetic force control of the end winding. Moreover, the maximum stress and deformation of different positions on the end involute are obtained. And the three-directional vibration acceleration characteristics of the end winding are further analyzed. Finally, the distribution law of winding fatigue failure and vibration wear is acquired, which lays a foundation for the reverse suppression of end winding fatigue failure and insulation wear.


Author(s):  
Yuriy Vaskovskiy ◽  
Alexandr Geraskin ◽  
Konstantin Tatarinov

The physical processes in the damper system of the rotor with the appearance of a static eccentricity of the rotor for two types of salient-pole synchronous machines - a capsule hydrogenator SGK 538/160-70M with a capacity of 22 MW and a synchronous generator with a capacity of 500 kW were investigated by means of mathematical modeling. A field mathematical model has been developed that takes into account the combined action of three physical fields of different nature: electromagnetic, temperature and field of thermomechanical stresses, and makes it possible to evaluate the heating and three-dimensional distribution of thermomechanical stresses in the structural elements of the rotor damper system of a salient-pole synchronous machine. These physical processes cause gradual destruction of the structure of the rotor damper system. It is proved that the primary cause of degradation and damage of the damping system of the rotor of an open-pole synchronous machine is the uneven distribution of induced currents in the rods at the poles of the rotor, which occurs when the machine works asynchronously or with the appearance of rotor static eccentricity. The largest induced currents and heat occur in the rods located at the edges of the pole pieces, while the central rods at the pole are heated significantly less. This asymmetric heating of the damping system of the rotor leads to significant thermomechanical stresses in the elements of the damping system of the rotor, which significantly depend on the magnitude of the eccentricity and slippery of the rotor in asynchronous mode. The magnitude of the total thermomechanical stresses in the rods is influenced not only by axially directed forces but also by transverse forces in the end short-circuiting elements. At considerable slippery and eccentricities there are inadmissibly big breaking forces which break cores and face short-circuiting elements of a damping system of a rotor. According to the results of the analysis, the heating and thermomechanical stresses of the structural elements were determined and recommendations for its structural improvement were given.


2021 ◽  
Vol 9 (11) ◽  
pp. 1290
Author(s):  
Fengqin Li ◽  
Lulu Zhai ◽  
Baoling Cui ◽  
Jia Guo ◽  
Guoyou Chen

Many annular seals suffer eccentricity because of rotor–stator misalignment or the deflection of a flexible rotor, which has a strong influence on the vibration characteristics and stability of rotating machines. In this article, a transient CFD method based on three whirl models is employed to research the dynamic characteristics of annular seals at various static eccentricities. The influence of the whirl amplitude on the dynamic characteristics of eccentric annular seals are also explored. The results of the transient CFD method are compared with the bulk flow model results and the experimental results. It is shown that the transient CFD method possesses high prediction precision for direct damping, with a maximum error of 25%. Negative kyx increases by 166% when the static eccentricity ratio is increased from 0 to 0.5. The dynamic characteristics of the annular seal operating at high static eccentric ratio are sensitive to whirl amplitude, and the model with an amplitude of 1% Cr has great advantages for the prediction of direct virtual-mass, while the model with an amplitude of 10% Cr has great advantages for the prediction of cross-coupled damping.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Zhang ◽  
Chuang-Jin He ◽  
Shuai Li ◽  
Yu-Ling He ◽  
Xiao-Long Wang ◽  
...  

This paper proposed a new hybrid diagnosis method for the generator’s 3D static eccentricity faults which include the axial eccentricity, the radial eccentricity, and the mixed eccentricity composed of the former two. Firstly, adaptive local iterative filtering (ALIF) method was used to decompose the vibration signals of the generator under eccentricity faults. Then, in order to figure out the intrinsic mode function (IMF) components with the upmost feature information, the correlation coefficient was calculated. Finally, the components’ permutation entropy (PE) is extracted to construct the eigenvector matrix which can be used to input the kernel fuzzy C-means (KFCM) algorithm to obtain the result of clustering. The result indicates that the classification coefficient based on ALIF and KFCM behaves closer to 1, while the average fuzzy entropy (FE) is closer to 0, showing that this method is able to detect different eccentricity faults more accurately.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2900
Author(s):  
Jin-Cheol Park ◽  
Soo-Hwan Park ◽  
Jae-Hyun Kim ◽  
Soo-Gyung Lee ◽  
Geun-Ho Lee ◽  
...  

Static eccentricity (SE) is frequently generated by manufacturing processes. As the nonuniformity of the air-gap length is caused by the SE, the torque ripple and cogging torque increase in the motor. This study analyzes the distorted back electromotive force (EMF) and cogging torque due to SE. Further, a motor design considering SE is performed for stable back EMF and low cogging torque. First, the SE was diagnosed and analyzed using the back EMF and cogging torque measured from the test results of the base model. In addition, the rotor position was calculated using the unbalanced back EMF due to the SE. The calculated rotor position is used when analyzing phenomena due to SE and applied to robust design. Subsequently, robust design optimization was performed to improve the unbalanced back EMF and cogging torque due to SE. Using finite element analysis (FEA) considering SE, the shape of the stator was designed based on the base model. The estimated rotor position from the base model was applied to the optimum model to confirm its robustness from SE’s effects. Finally, the base and optimum models were compared through the test results.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhan Wang ◽  
Wenzhi He ◽  
Siyuan Du ◽  
Zhe Yuan

Unbalanced fault is the most common fault of high-speed motorized spindle, which is the main factor affecting the machining accuracy of high-speed spindle. Due to the unbalanced magnetic pull produced by the air gap eccentricity of the stator and rotor, the unbalanced vibration of the motorized spindle will be further aggravated. In order to explore the dynamic behavior and motion law of the unbalanced fault motorized spindle under the eccentric state, a dynamic model of the unbalanced fault of the high-speed motorized spindle considering the unbalanced magnetic pull was established. Taking the eccentric motorized spindle customized by the research group as the research object, the dynamic model is established, simulated, and analyzed, and the response change law of motorized spindle under the effect of different speed, unbalance, and air gap is obtained. The simulation results show that the unbalanced magnetic pull caused by static eccentricity will increase the unbalanced vibration of motorized spindle, and the unbalanced vibration will also increase with the increase of static eccentricity. The vibration caused by unbalanced magnetic pull does not increase with the increase of rotating speed. In frequency-domain analysis, when there is unbalanced magnetic pull, the peak appears at 0 Hz, and the amplitude of fundamental frequency vibration will increase with the increase of eccentricity. The experimental results show that the greater the eccentricity is, the greater the unbalance vibration of the motorized spindle is. The experimental results are consistent with the simulation results, which further verify the accuracy of the model. The research results lay a theoretical basis for fault analysis and diagnosis of coupling fault motorized spindle.


Sign in / Sign up

Export Citation Format

Share Document