endosymbiotic bacteria
Recently Published Documents


TOTAL DOCUMENTS

227
(FIVE YEARS 56)

H-INDEX

45
(FIVE YEARS 3)

Author(s):  
Afri Herlambang ◽  
Yong Guo ◽  
Yusuke Takashima ◽  
Kazuhiko Narisawa ◽  
Hiroyuki Ohta ◽  
...  

Some mucoromycotan fungi establish symbiotic associations with endohyphal bacteria. Here, the genome of Entomortierella parvispora E1425 (synonymously known as Mortierella parvispora E1425), which harbors a cultured Burkholderiaceae -related endobacterium (BRE) designated Mycoavidus sp. Strain B2-EB, was sequenced. We provide genomic information to elucidate fungal-BRE symbiotic features.


2021 ◽  
Author(s):  
Paulino Ramirez ◽  
Justin C. Leavitt ◽  
Jason J. Gill ◽  
Mariana Mateos

Viruses are vastly abundant and influential in all ecosystems, and are generally regarded as pathogens. Viruses of prokaryotes (themselves highly diverse and abundant) are known as bacteriophages or phages. Phages engage in diverse associations with their hosts, and contribute to regulation of biogeochemical processes, horizontal movement of genes, and control of bacterial populations. Recent studies have revealed the influential role of phage in the association of arthropods and their heritable endosymbiotic bacteria (e.g. the Proteobacteria genera Wolbachia and Hamiltonella). Despite prior studies (~30 years ago) documenting presence of phage in the mollicute Spiroplasma infecting Drosophila, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. The present work isolated phage-like particles from the male-killing Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Our results recovered three ~19 kb phage-like contigs (two in NSRO and one in MSRO-Br), and two smaller non-phage-like contigs encoding a known Spiroplasma toxin and an insertion element. Whole or parts of the particle-derived contigs were found in the genome assemblies of members of the Spiroplasma poulsonii clade. Although our results do not allow us to distinguish whether the contigs obtained represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We discuss potential implications of our findings and suggest future directions.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009539
Author(s):  
Jae Hak Son ◽  
Brian L. Weiss ◽  
Daniela I. Schneider ◽  
Kiswend-sida M. Dera ◽  
Fabian Gstöttenmayer ◽  
...  

Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host’s metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly’s resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse’s viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse’s reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.


2021 ◽  
Author(s):  
alissa hammoud ◽  
Meriem Louni ◽  
Dorothée Missé ◽  
Florence Fenollar ◽  
Oleg Mediannikov

Abstract Background: The human louse is one of the most ancient haematophagous ectoparasites that is related intimately to its host and has been of great concern to public health throughout human history. Previously, Pediculus humanus was classified within six divergent mitochondrial clades (A, D, B, F, C and E). Like all haematophagous lice, P. humanus directly depends on the presence of bacterial symbionts, known as “Candidatus Riesia pediculicola”, to complement their unbalanced diet. In this study, we evaluated the coevolution of human lice around the world and their endosymbiotic bacteria. Using molecular approaches, we targeted lice mitochondrial genes from the six diverged clades and Candidatus R. pediculicola housekeeping genes. Methods: A total of 126 lice were selected for molecular analysis of the cytb gene for lice clade determination. In parallel, four PCR primer pairs were developed targeting three housekeeping genes of Candidatus R. pediculicola: ftsZ, groEL and two regions of the rpoB gene (rpoB-1 and rpoB-2).Results: The endosymbiont phylogeny perfectly mirrored the host insect phylogeny, using the ftsZ and rpoB-2 genes, suggesting a strict vertical transmission and a host-symbiont co-speciation following the evolutionary course of the human louse. Conclusion: Our results unequivocally indicate that lice endosymbiont have experienced a similar co-evolutionary history, and that the human louse clade can be determined by their endosymbiotic bacteria.


2021 ◽  
Author(s):  
Roman Savary ◽  
Frederic G Masclaux ◽  
Ian R Sanders

Arbuscular mycorrhizal fungi (AMF; Glomeromycotina) are symbionts of most plant species that are known to possess unique intracytoplasmic endosymbiotic bacteria with an enigmatic role. Candidatus Moeniiplasma glomeromycotorum (CaMg) was shown to be widespread along the AMF phylogeny and present in most AMF species and isolates of those species. The model AMF species, Rhizophagus irregularis, that can be cultivated in vitro and for which a lot of genomic information now exists, would be the ideal model to study the true nature of the CaMg-AMF symbiosis. However, R. irregularis was never found to host endobacteria. Here we show by DNA sequencing that R. irregularis can, indeed, host CaMg (Ri-CaMg). However, this appears rare as only one R. irregularis isolate out of 58 hosted CaMg. In that isolate, the endosymbiotic bacterial population was genetically homogenous. By sequencing the complete genome of the bacteria, we found that its genome is among the smallest of all known CaMg and Mycoplasma-like genomes, with a highly reduced gene repertoire, suggesting a strong adaptation to the intracellular life. We discuss our findings in the light of previous literature on CaMg and on the same AMF isolates and suggest that these endosymbionts are more likely parasites than non-obligatory mutualists.


2021 ◽  
Author(s):  
Mathilde Clement ◽  
Martine Da Rocha ◽  
Sandra Agnel ◽  
Guenter Raddatz ◽  
Alain Robichon ◽  
...  

Pea aphid Acyrtosiphon pisum, a sap-feeding insect, has established a mutualistic relationship with an endosymbiotic bacteria (Buchnera aphidicola) that constitutes an evolutionary successful symbiosis to synthetize complex chemical compounds from a nutrient deprived diet. In this study, led by the presence of DNMT1 and a putative DNMT3 methylase in the aphid genome, we investigated the distribution of the methyl groups on 5'cytosine in CpG motifs on the whole genomes of host and endosymbiont, and looked into their correlation with gene expression. The DNA methylation turned to be present at low level in aphid (around 3% of total genomic cytosine) compared to mammals and plants, but increased to ~9% in genes. Interestingly, the reduced genome of the endosymbiont Buchnera also shows global low level of methyl cytosine despite the fact that its genome does not shelter any DNA methylase. This finding argues for the import of DNA methylase from the host to the endosymbiont. The observed differences in methylation patterns between two clonal variants (host plus endosymbiont) are reported along with the differences in their transcriptome profiles. Our data allowed to decipher a dynamic combinatorial DNA methylation and epigenetic cross talk between host and symbiont in a clonality context that might count for the aphid adaptation to environment.


2021 ◽  
Vol 97 (10) ◽  
Author(s):  
Jan Hubert ◽  
Marta Nesvorna ◽  
Stano Pekar ◽  
Stefan J Green ◽  
Pavel B Klimov

ABSTRACT Interactions among endosymbiotic bacteria inside their eukaryotic hosts are poorly understood, particularly in mites. The mite Tyrophagus putrescentiae is a common, medically important generalist species that has many intracellular and gut bacterial symbionts. In the experiments, we examined bacterial abundances and composition in mite populations obtained by controlled mixing of stock mite populations that differed in the presence/absence of the major intracellular bacteria Wolbachia and Cardinium. Changes in microbial communities were characterized using 16S ribosomal RNA high-throughput sequencing (pooled mite individuals) and quantitative PCR for key microbial taxa (individual mites). Mite fitness was estimated as a parameter of population growth. We detected that in mixed mite populations, Cardinium and Wolbachia can co-occur in the same mite individual. The presence of Cardinium was negatively correlated with the presence of Wolbachia and Bartonella, while the Bartonella and Wolbachia were positively correlated in individual level samples. Since mixed populations had lower abundances of Wolbachia, while the abundance of Cardinium did not change, we suggest that the presence of Cardinium inhibits the growth of Wolbachia. The mixed mite populations had lower population growth than parental populations. The possible effect of symbionts on the fitness of mixed population is discussed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexander Bergman ◽  
Jenny C. Hesson

Abstract Background Wolbachia pipientis are endosymbiotic bacteria present in a large proportion of terrestrial arthropods. The species is known to sometimes affect the ability of its host to transmit vector-borne pathogens. Central Sweden is endemic for Sindbis virus (SINV), where it is mainly transmitted by the vector species Culex pipiens and Culex torrentium, with the latter established as the main vector. In this study we investigated the Wolbachia prevalence in these two vector species in a region highly endemic for SINV. Methods Culex mosquitoes were collected using CDC light traps baited with carbon dioxide over 9 years at 50 collection sites across the River Dalälven floodplains in central Sweden. Mosquito genus was determined morphologically, while a molecular method was used for reliable species determination. The presence of Wolbachia was determined through PCR using general primers targeting the wsp gene and sequencing of selected samples. Results In total, 676 Cx. pipiens and 293 Cx. torrentium were tested for Wolbachia. The prevalence of Wolbachia in Cx. pipiens was 97% (95% CI 94.8–97.6%), while only 0.7% (95% CI 0.19–2.45%) in Cx. torrentium. The two Cx. torrentium mosquitoes that were infected with Wolbachia carried different types of the bacteria. Conclusions The main vector of SINV in the investigated endemic region, Cx. torrentium, was seldom infected with Wolbachia, while it was highly prevalent in the secondary vector, Cx. pipiens. The presence of Wolbachia could potentially have an impact on the vector competence of these two species. Furthermore, the detection of Wolbachia in Cx. torrentium could indicate horizontal transmission of the endosymbiont between arthropods of different species. Graphical abstract


2021 ◽  
Author(s):  
James G DuBose ◽  
Michael S Robeson ◽  
Mackenzie Hoogshagen ◽  
Hunter Olsen ◽  
Tamara S Haselkorn

The relationship between the social amoeba Dictyostelium discoideum and its endosymbiotic bacteria Paraburkholderia provides a model system for studying the development of symbiotic relationships. Laboratory experiments have shown that any of three species of Paraburkholderia symbiont allow D. discoideum food bacteria to persist through the amoeba lifecycle and survive in amoeba spores, rather than being fully digested. This phenomenon is termed "farming", as it potentially allows spores dispersed to food poor locations to grow their own. The occurrence and impact of farming in natural populations, however, has been a challenge to measure. Here, we surveyed natural D. discoideum populations and found that only one of the three symbiont species, P. agricolaris, remained prevalent. We then explored the effect of Paraburkholdia on the amoeba microbiome, expecting that by facilitating bacterial food carriage it would diversify the microbiome. Contrary to our expectations, Paraburkholderia tended to infectiously dominate the D. discoideum microbiome, in some cases decreasing diversity. Similarly, we found little evidence for Paraburkholderia facilitating the carriage of particular food bacteria. These findings change our understanding of farming and suggest the possibility that Paraburkholderia could be playing multiple roles for its host, as inferred metagenomic analysis indicates a potential role of P. agricolaris in toxin degradation.


2021 ◽  
Vol 9 (8) ◽  
pp. 1734
Author(s):  
Carolina Osuna-Mascaró ◽  
Jorge Doña ◽  
Kevin P. Johnson ◽  
Manuel de Rojas

Rhinonyssidae (Mesostigmata) is a family of nasal mites only found in birds. All species are hematophagous endoparasites, which may damage the nasal cavities of birds, and also could be potential reservoirs or vectors of other infections. However, the role of members of Rhinonyssidae as disease vectors in wild bird populations remains uninvestigated, with studies of the microbiomes of Rhinonyssidae being almost non-existent. In the nasal mite (Tinaminyssus melloi) from rock doves (Columba livia), a previous study found evidence of a highly abundant putatively endosymbiotic bacteria from Class Alphaproteobacteria. Here, we expanded the sample size of this species (two different hosts- ten nasal mites from two independent samples per host), incorporated contamination controls, and increased sequencing depth in shotgun sequencing and genome-resolved metagenomic analyses. Our goal was to increase the information regarding this mite species and its putative endosymbiont. We obtained a metagenome assembled genome (MAG) that was estimated to be 98.1% complete and containing only 0.9% possible contamination. Moreover, the MAG has characteristics typical of endosymbionts (namely, small genome size an AT bias). Overall, our results support the presence of a potential endosymbiont, which is the first described for avian nasal mites to date, and improve the overall understanding of the microbiota inhabiting these mites.


Sign in / Sign up

Export Citation Format

Share Document