edm process
Recently Published Documents


TOTAL DOCUMENTS

729
(FIVE YEARS 239)

H-INDEX

40
(FIVE YEARS 6)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 513
Author(s):  
Shoufa Liu ◽  
Muthuramalingam Thangaraj ◽  
Khaja Moiduddin ◽  
Abdulrahman M. Al-Ahmari

Titanium alloy is widely used for orthodontic technology and easily machined using the EDM process. In the EDM process, the workpiece and tool electrode must be separated by a continuous air gap during the machining operation to generate discharge energy in this method. In the present study, an endeavor was made to analyze the effects of a servo feed air gap control and tool electrode in the EDM process. The developed mechanical setup consists of a linear action movement with zero backlash along the X-axis, which can be controlled up to 0.03 mm. It was observed that the suggested air gap control scheme can enhance the servo feed mechanism on a machining titanium alloy. A tungsten carbide electrode can enhance the surface measures owing to its ability to produce tiny craters with uniform distribution. Since it produces a little crater and has a higher melting point, a tungsten carbide electrode can create lesser surface roughness than a copper tool and brass tool electrode.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tejanshu Sekhar Sahu ◽  
Allan George ◽  
Basil Kuriachen ◽  
Jose Mathew ◽  
P.B. Dhanish

Purpose This paper aims to focus on analysing the wear characteristics of tungsten carbide tools on which various micro patterns are fabricated to study its effect on the machinability of Ti-6Al-4V at dry turning conditions. Design/methodology/approach Micro-patterns such as dimples, linear grooves and a novel combination of dimples and linear grooves were fabricated on rake faces of uncoated tools by micro-EDM process. Impact of these patterns on tool wear and chip morphology characteristics under dry machining conditions were analysed, and their performances were compared with the non-textured tool (NTT). Findings Encouraging results in terms of minimal tool wear and favourable chip morphology characteristics were observed in case of all the textured tools, which demonstrated better tribological characteristics in contrast to NTT. The average flank wear was reduced by 43.5, 32 and 24.7% in dimple textured tool (DTT), linear textured tool (LTT) and hybrid textured tool (HTT), respectively, as compared to NTT. The average chip curl diameters measured for NTT, DTT, LTT, and HTT were observed to be 6.60, 3.51, 4.0 and 4.31 mm, respectively. Originality/value The contribution of this work lies in fabricating innovative patterns using cost-effective micro-EDM process and analysing how the patterns, depending upon their dimensional area and wear debris accumulation characteristics, influence the machinability of Ti-6Al-4V in the absence of any lubrication mediums.


2022 ◽  
pp. 824-842
Author(s):  
Kaushik Kumar ◽  
J. Paulo Davim

Electrical Discharge Machining (EDM) process is a widely used machining process in several fabrication, construction and repair work applications. Considering Pulse-On Time, Pulse OFF time, Peak-Current and Gap voltage as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness are considered as outputs. In order to reduce the number of experiments Design of Experiments (DOE) was undertaken using Orthogonal Array and later on the outputs were optimized using ANN and PSO. It was found that the results obtained from both the techniques were tallying with each other.


2021 ◽  
Vol 55 (6) ◽  
Author(s):  
Ramasubbu Narasimmalu ◽  
Ramabalan Sundaresan

Electrode wear and metal removal exhibited nonlinear behavior in the Electrical Discharge Machining (EDM) of Hastelloy B2 plate. Hence, mathematical modeling was used to solve this problem. The hole size, pulse duration, duty cycle, and current were selected as inputs. Squareness and taper angle were considered as responses. Therefore, the Modified-Additive Ratio Assessment Method (M-ARAS) based Adaptive Neuro Fuzzy Inference System (ANFIS) method was used to find the optimum EDM process parameters. The overall analysis showed that the M-ARAS-based ANFIS algorithm provided a good fit for optimization of the process parameters and could be used for further multi-objective optimization problems.  


Author(s):  
M. Ramdas ◽  
J. S. Soni ◽  
B. Balunaik

Electro discharge machining (EDM) is an unconventional machining process that uses spark energy to remove material from the workpiece. EDM process is extensively being used in die/mould making industries, automobile industry, aerospace industry etc. for generating complex and intricate shape on hard material. Numbers of research works have been carried out using EDM process in order to improve the performance. Further, different variant of EDM process like dry EDM, orbital EDM, powder mixed EDM, ultrasonic assisted EDM and rotary EDM etc. have also been studied. Rotary EDM process is very promising process that helps to improve surface finish, overcut as well as out of roundness. In the present paper, a extensive review has been presented on rotary EDM process. Significance of several input parameters has been observed on output characteristics like overcut and out of roundness.


2021 ◽  
Vol 32 (3) ◽  
pp. 31-44
Author(s):  
Dylan Jia Yee Tong ◽  
◽  
Seong Chun Koay ◽  
Ming Yeng Chan ◽  
Kim Yeow Tshai ◽  
...  

Electric Discharge Machining (EDM) process uses electrodes made from graphite that wear out over time and are turned into scrap. In this research, EDM electrode scraps were recycled and turned into graphite powder (rGP). This rGP was used as a conductive filler to produce conductive polymer composite (CPC) material by combining it with polypropylene (PP) resin via melt compounding and compression moulding processes. The percolation threshold of this composite material changed when 30 wt% of rGP was added, whereby the insulative material changed became antistatic. The composite was able to achieve surface resistivity as low as 105 ohm/sq. However, the addition of higher rGP content deteriorated the tensile properties of composite, whereby the tensile strength of composite significantly decreased as compared to neat PP. The results also showed that the tensile modulus of this composite became higher, and the material became more brittle as compared to neat PP. However, the PP/rGP composite with 50 wt% filler content reduced the tensile modulus due to plasticising effect caused by the agglomeration of rGP. The addition of high filler content on PP/rGP composite also caused an increase in processing torque. This was due to the restriction of rGP particles to the melt flow of molten PP. The morphological analysis found that the PP/rGP composites with higher amounts of filler content were highly agglomerated and formed conductivity paths within the PP matrix. The increase of rGP content highly improved the thermal stability of composite. The findings of this study show that the rGP has the potential to be used as a conductive filler for producing conductive composite material.


Author(s):  
Duraisivam Saminatharaja ◽  
Suresh Periyakgounder ◽  
Mahalingam Selvaraj ◽  
Jamuna Elangandhi

Electrical discharge machines (EDM) are widely employed in machining components containing complex profiles of hard-to-cut and machining materials. However, the fabrication-of-tool time for the EDM process is excessively high in the traditional machining method, which significantly affects the machining rate. Therefore, in this paper, a powder metallurgy (PM) technique is employed to fabricate the tool electrode using copper (Cu), titanium carbide (TiC), and zirconium silicate (ZrSiO4) for different combinations. An L18 orthogonal array (OA) is planned using the following input parameters: three types of tools (Cu, Cu90, Cu80), peak current (PC) [A], pulse on time (PT) [µs], and gap voltage (GV) [V]. The performance of EDM is evaluated through the material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR). The process parameters are optimized using two different techniques: the technique for order of preference by similarity to the ideal solution (TOPSIS) and grey relational analysis (GRA). TOPSIS and GRA optimization techniques produce the same optimal parametric solution for less TWR, SR, and higher MRR with the combination of the Cu90 tool, E8 APC, 15 µs pulse PT, and 75 V GV. Based on the ANOVA table of TOPSIS, pulse on time plays a major role, contributing 46.8 % of the machining performance; peak current shows the most significant contribution of 39.3 % of the machining performance using GRA values. Furthermore, the scanning electron microscope (SEM) image analyses are carried out on the machined workpiece surface to understand the effect of tools on machining quality.


Sign in / Sign up

Export Citation Format

Share Document