modular products
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 6)

H-INDEX

16
(FIVE YEARS 0)

Author(s):  
Xianfu Cheng ◽  
Zhihu Guo ◽  
Xiaotian Ma ◽  
Tian Yuan

Modular design is a widely used strategy that meets diverse customer requirements. Close relationships exist between parts inside a module and loose linkages between modules in the modular products. A change of one part or module may cause changes of other parts or modules, which in turn propagate through a product. This paper aims to present an approach to analyze the associations and change impacts between modules and identify influential modules in modular product design. The proposed framework explores all possible change propagation paths (CPPs), and measures change impact degrees between modules. In this article, a design structure matrix (DSM) is used to express dependence relationships between parts, and change propagation trees of affected parts within module are constructed. The influence of the affected part in the corresponding module is also analyzed, and a reachable matrix is employed to determine reachable parts of change propagation. The parallel breadth-first algorithm is used to search propagation paths. The influential modules are identified according to their comprehensive change impact degrees that are computed by the bat algorithm. Finally, a case study on the grab illustrates the impacts of design change in modular products.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Hai-jun Wang ◽  
Chao-hui Shu

In an open innovation environment, it is meaningful for manufacturing enterprises targeting global markets to integrate qualified innovation resources. In this paper, the linkage between product modularity and open innovation is first discussed, revealing a role that modular product architecture plays in linking enterprises’ innovation requirements and innovation resources as external innovation inputs. Next, indices for evaluating external innovation resources are developed. An evaluation method based on fuzzy distance is then proposed, which is intended to select optimal resources for the core modules of modular product architecture. A modular product of Haier Group is used as a typical case to verify the proposed method. Consistent evaluation results of innovation resources are achieved for different decision-making attitudes. Another finding regarding the case enterprise is that the resource management mechanisms it employs lead to a win-win cooperative relationship with its partners.


2020 ◽  
Vol 1 ◽  
pp. 1115-1124
Author(s):  
K.-E. W. H. Steffan ◽  
M. Fett ◽  
E. Kirchner

AbstractIn modular products conflicting objectives may occur. This leads to characteristics as component-dependent oversizing and undersizing as well as increased complexity of the interfaces. These conflicts can be resolved using the potentials of AM processes. For the best use possible, the potentials are systematically considered in the early design phases as part of an extended procedure. The extended procedure improves the benefit-effort ratio of modular respectively individual products and a further optimization of the product architecture and consideration of synergy effects is achieved.


Author(s):  
Lorenzo Fiorineschi ◽  
Federico Rotini

AbstractModularity is acknowledged to provide benefits across the whole product lifecycle. Accordingly, many literature contributions can be found about modularization methods, metrics and definitions. In particular, recent studies focused on the development of heuristic principles for exploiting modularity early in the design process. However, to design modules it is necessary to define their mutual interactions, the related interfaces and their production strategies. Concerning interfaces and interactions, this paper highlights that current definitions are often ambiguous and overlapping each other. Therefore, extracting univocal information about interfaces and interactions of existent modular products could be difficult. This could hinder the identification of comprehensive heuristic design guidelines, about how to design modules from a structural point of view. This paper proposes a new set of interface and interaction definitions, which allows to overcome the flaw observed for current ones. The proposed set and the classical one have been applied on 110 products identified on the web, showing that the new definitions allow to extract more reliable information.


2019 ◽  
Vol 27 (1) ◽  
pp. 87-91
Author(s):  
Hiroyuki Okazaki ◽  
Koh-ichi Nagao ◽  
Yuichi Futa

Summary In this article we formalize in Mizar [1], [2] the maximum number of steps taken by some number theoretical algorithms, “right–to–left binary algorithm” for modular exponentiation and “Euclidean algorithm” [5]. For any natural numbers a, b, n, “right–to–left binary algorithm” can calculate the natural number, see (Def. 2), AlgoBPow(a, n, m) := ab mod n and for any integers a, b, “Euclidean algorithm” can calculate the non negative integer gcd(a, b). We have not formalized computational complexity of algorithms yet, though we had already formalize the “Euclidean algorithm” in [7]. For “right-to-left binary algorithm”, we formalize the theorem, which says that the required number of the modular squares and modular products in this algorithms are ⌊1+log2 n⌋ and for “Euclidean algorithm”, we formalize the Lamé’s theorem [6], which says the required number of the divisions in this algorithm is at most 5 log10 min(|a|, |b|). Our aim is to support the implementation of number theoretic tools and evaluating computational complexities of algorithms to prove the security of cryptographic systems.


Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 37 ◽  
Author(s):  
Charul Chadha ◽  
Kathryn Crowe ◽  
Christina Carmen ◽  
Albert Patterson

This work explores an additive-manufacturing-enabled combination-of-function approach for design of modular products. AM technologies allow the design and manufacturing of nearly free-form geometry, which can be used to create more complex, multi-function or multi-feature parts. The approach presented here replaces sub-assemblies within a modular product or system with more complex consolidated parts that are designed and manufactured using AM technologies. This approach can increase the reliability of systems and products by reducing the number of interfaces, as well as allowing the optimization of the more complex parts during the design. The smaller part count and the ability of users to replace or upgrade the system or product parts on-demand should reduce user risk, life-cycle costs, and prevent obsolescence for the user of many systems. This study presents a detailed review on the current state-of-the-art in modular product design in order to demonstrate the place, need and usefulness of this AM-enabled method for systems and products that could benefit from it. A detailed case study is developed and presented to illustrate the concepts.


Author(s):  
Charul Chadha ◽  
Kathryn Crowe ◽  
Christina Carmen ◽  
Albert Patterson

This work explores an additive-manufacturing-enabled combination-of-function approach for design of modular products. AM technologies allow the design and manufacturing of nearly free-form geometry, which can be used to create more complex, multi-function or multi-feature parts. The approach presented here replaces sub-assemblies within a modular product or system with more complex single parts that are designed and manufactured using AM technologies. This approach can increase the reliability of systems and products by reducing the number of interfaces, as well as allowing the optimization of the more complex parts during the design. The smaller part count and the ability of users to replace or upgrade the system or product parts on-demand should reduce user risk, life-cycle costs, and prevent obsolescence for the user of many systems. This study presents a detailed review on the current state-of-the-art in modular product design in order to demonstrate the place, need and usefulness of this AM-enabled method for systems and products that could benefit from it. A detailed case study is developed and presented to demonstrate the concepts.


Sign in / Sign up

Export Citation Format

Share Document