kinematics and kinetics
Recently Published Documents


TOTAL DOCUMENTS

586
(FIVE YEARS 152)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Pawel Robert Golyski ◽  
Gregory S Sawicki

Maintaining stability during perturbed locomotion requires coordinated responses across multiple levels of organization (e.g., legs, joints, muscle-tendon units). However, current approaches to investigating such responses lack a "common currency" that is both shared across scales and can be directly related to perturbation demands. We used mechanical energetics to investigate the demands imposed on a leg by a transient increase in unilateral treadmill belt speed targeted to either early or late stance. We collected full body kinematics and kinetics from 7 healthy participants during 222 total perturbations. From across-subject means, we found early stance perturbations elicited no change in net work exchanged between the perturbed leg and the treadmill but net positive work at the overall leg level, and late stance perturbations elicited positive work at the leg/treadmill interface but no change in net work at the overall leg level. Across all perturbations, changes in ankle and knee work from steady state best reflected changes in overall leg work on the perturbed and contralateral sides, respectively. Broadening this paradigm to include joint level (vs. leg level) perturbations and including muscle-tendon unit mechanical energetics may reveal neuromechanical responses used in destabilizing environments which could inform design of balance-assisting devices and interventions.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 259
Author(s):  
Annamaria Guiotto ◽  
Alfredo Ciniglio ◽  
Fabiola Spolaor ◽  
Davide Pavan ◽  
Federica Cibin ◽  
...  

Anterior cruciate ligament (ACL) lesion represents one of the most dramatic sport injuries. Even though clinical screenings aiming at identifying subjects at risk of injuries are gaining popularity, the use of sophisticated equipment still represents a barrier towards their widespread use. This study aimed to test both reliability and repeatability of a new methodology to assess lower limb joints kinematics and kinetics directly on field with the aid of video cameras and plantar pressure insoles. Ten athletes and one case study (post ACL surgery) were assessed in a gait laboratory, while performing double leg squats, through the simultaneous acquisition of stereophotogrammetry, force plates, commercial video cameras and plantar pressure insoles. Different sources of errors were investigated and both reliability and repeatability analysis performed. Minimum and maximum RMSE values of 0.74% (right knee joint center trajectory) and 64.51%, respectively (ankle dorsi-plantarflexion moment), were detected. Excellent to good correlation was found for the majority of the measures, even though very poor and inverse between-trials correlation was found on a restricted number of trials especially for the ankle dorsi-plantarflexion moment. These findings could be used in combination with already available screening tools in order to provide more repeatable results.


2021 ◽  
Vol 3 ◽  
Author(s):  
Paige E. Rice ◽  
Kiisa Nishikawa ◽  
Sophia Nimphius

The purpose of this study was to investigate the effect of a 12-week ankle-specific block progression training program on saut de chat leaping performance [leap height, peak power (PP), joint kinetics and kinematics], maximal voluntary isometric plantar flexion (MVIP) strength, and Achilles tendon (AT) stiffness. Dancers (training group n = 7, control group n = 7) performed MVIP at plantarflexed (10◦) and neutral ankle positions (0◦) followed by ramping isometric contractions equipped with ultrasound to assess strength and AT stiffness, respectively. Dancers also performed saut de chat leaps surrounded by 3-D motion capture atop force platforms to determine center of mass and joint kinematics and kinetics. The training group then followed a 12-week ankle-focused program including isometric, dynamic constant external resistance, accentuated eccentric loading, and plyometric training modalities, while the control group continued dancing normally. We found that the training group's saut de chat ankle PP (59.8%), braking ankle stiffness (69.6%), center of mass PP (11.4%), and leap height (12.1%) significantly increased following training. We further found that the training group's MVIP significantly increased at 10◦ (17.0%) and 0◦ (12.2%) along with AT stiffness (29.6%), while aesthetic leaping measures were unchanged (peak split angle, mean trunk angle, trunk angle range). Ankle-specific block progression training appears to benefit saut de chat leaping performance, PP output, ankle-joint kinetics, maximal strength, and AT stiffness, while not affecting kinematic aesthetic measures. We speculate that the combined training blocks elicited physiological changes and enhanced neuromuscular synchronization for increased saut de chat leaping performance in this cohort of dancers.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1366
Author(s):  
Athanasios Triantafyllou ◽  
Georgios Papagiannis ◽  
Vasileios S. Nikolaou ◽  
Panayiotis J. Papagelopoulos ◽  
George C. Babis

In vitro measurements are widely used to implement gait kinematic and kinetic parameters to predict THA wear rate. Clinical tests of materials and designs are crucial to prove the accuracy and validate such measurements. This research aimed to examine the effect of CoC and CoXLPE kinematics and kinetics on wear during gait, the essential functional activity of humans, by comparing in vivo data to in vitro results. Our study hypothesis was that both implants would present the same hip joint kinematics and kinetics during gait. In total, 127 unilateral primary cementless total hip arthroplasties were included in the research. There were no statistically significant differences observed at mean peak abduction, flexion, and extension moments and THA kinematics between the two groups. THA gait kinematics and kinetics are crucial biomechanical inputs associated with implant wear. In vitro studies report less wear in CoC than CoXLPE when tested in a matched gait kinematic protocol. Our findings confirm that both implants behave identically in terms of kinematics in a clinical environment, thus strengthening CoC advantage in in vitro results. Correlated to all other significant factors that affect THA wear, it could address in a complete prism the wear on CoC and CoXLPE.


2021 ◽  
Vol 25 (4) ◽  
pp. 5-18
Author(s):  
Sonia Litwin ◽  
Klaudia Woźniak ◽  
Mariusz Olszewski

The paper describes an innovative design of a bionic robot for applications in felinotherapy supporting hospital and home psychotherapeutic treatment of bedridden children and adults. The project was engineered by biomimicrating a biological cat, reaching its robotic model. Particular attention in this process was devoted to capturing the essence of feline motorics behavior and the possibility of mapping them in a mechatronic model. The geometry, kinematics and kinetics of this model were analyzed, creating assumptions for its practical implementation in the real mechanism of cat skeleton movement. The used software used the topology of elements in Autodesk Fusion 360 Simulation workspace by performing the critical elements of the mechatronic model in print using SLS technology. The work was also supported by a graphical simulation in the PyBullet environment.


2021 ◽  
Author(s):  
Erika V. Zabre-Gonzalez ◽  
Diego Amieva-Alvarado ◽  
Scott A. Beardsley

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Emma Reznick ◽  
Kyle R. Embry ◽  
Ross Neuman ◽  
Edgar Bolívar-Nieto ◽  
Nicholas P. Fey ◽  
...  

AbstractHuman locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities. This data paper reports a new dataset that includes the lower-limb kinematics and kinetics of ten able-bodied participants walking at multiple inclines (±0°; 5° and 10°) and speeds (0.8 m/s; 1 m/s; 1.2 m/s), running at multiple speeds (1.8 m/s; 2 m/s; 2.2 m/s and 2.4 m/s), walking and running with constant acceleration (±0.2; 0.5), and stair ascent/descent with multiple stair inclines (20°; 25°; 30° and 35°). This dataset also includes sit-stand transitions, walk-run transitions, and walk-stairs transitions. Data were recorded by a Vicon motion capture system and, for applicable tasks, a Bertec instrumented treadmill.


Author(s):  
Johannes Maximilian Schmutterer ◽  
Peter Augat ◽  
Markus Greinwald ◽  
Andrea Meyer-Lindenberg

Abstract Objectives The aim of the study was to investigate the kinetic and kinematic changes in the stifle after a tibial plateau levelling osteotomy (TPLO) with a postoperative tibia plateau angle (TPA) of either 6 or 1 degrees. Study Design Biomechanical ex vivo study using seven unpaired canine cadaver hindlimbs from adult Retrievers.Hinge plates were applied and a sham TPLO surgery was performed. Motion sensors were fixed to the tibia and the femur for kinematic data acquisition. Pressure mapping sensors were placed between femur and both menisci. Thirty per cent bodyweight was applied to the limbs with the stifle in 135 degrees of extension. Each knee was tested with intact cranial cruciate ligament (CCL), deficient CCL, 6 degrees TPLO and 1degree TPLO. Results Transection of the CCL altered kinematics and kinetics. However, comparing the intact with both TPLO set-ups, no changes in kinematics were detected. After 1 degree TPLO, a significant reduction in the force acting on both menisci was detected (p = 0.006). Conclusions Tibial plateau levelling osteotomy restores stifle kinematics and meniscal kinetics after transection of the CCL ex vivo. The contact force on both menisci is reduced significantly after TPLO with a TPA of 1 degree. Increased stifle flexion might lead to caudal tibial motion.


2021 ◽  
pp. 71-75
Author(s):  
Hamidreza Barnamehei ◽  
Farhad Tabatabai Ghomsheh ◽  
Afsaneh Safar Cherati ◽  
Majid Pouladian ◽  
Arghavan Aminishahsavarani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document