coding potential
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 71)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Vol 13 ◽  
Author(s):  
Eugenie Peze-Heidsieck ◽  
Tom Bonnifet ◽  
Rania Znaidi ◽  
Camille Ravel-Godreuil ◽  
Olivia Massiani-Beaudoin ◽  
...  

The etiology of aging-associated neurodegenerative diseases (NDs), such as Parkinson’s disease (PD) and Alzheimer’s disease (AD), still remains elusive and no curative treatment is available. Age is the major risk factor for PD and AD, but the molecular link between aging and neurodegeneration is not fully understood. Aging is defined by several hallmarks, some of which partially overlap with pathways implicated in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable elements (TEs) and that this derepression might have important implications in the pathogenesis of NDs. Almost half of the human DNA is composed of repetitive sequences derived from TEs and TE mobility participated in shaping the mammalian genomes during evolution. Although most TEs are mutated and no longer mobile, more than 100 LINE-1 elements have retained their full coding potential in humans and are thus retrotransposition competent. Uncontrolled activation of TEs has now been reported in various models of neurodegeneration and in diseased human brain tissues. We will discuss in this review the potential contribution of LINE-1 elements in inducing DNA damage and genomic instability, which are emerging pathological features in NDs. TEs might represent an important molecular link between aging and neurodegeneration, and a potential target for urgently needed novel therapeutic disease-modifying interventions.


Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Andrea M. Kaminski ◽  
Thomas A. Kunkel ◽  
Lars C. Pedersen ◽  
Katarzyna Bebenek

8-oxo-guanine (8OG) is a common base lesion, generated by reactive oxygen species, which has been associated with human diseases such as cancer, aging-related neurodegenerative disorders and atherosclerosis. 8OG is highly mutagenic, due to its dual-coding potential it can pair both with adenine or cytidine. Therefore, it creates a challenge for DNA polymerases striving to correctly replicate and/or repair genomic or mitochondrial DNA. Numerous structural studies provide insights into the mechanistic basis of the specificity of 8OG bypass by DNA polymerases from different families. Here, we focus on how repair polymerases from Family X (Pols β, λ and µ) engage DNA substrates containing the oxidized guanine. We review structures of binary and ternary complexes for the three polymerases, which represent distinct steps in their catalytic cycles—the binding of the DNA substrate and the incoming nucleotide, followed by its insertion and extension. At each of these steps, the polymerase may favor or exclude the correct C or incorrect A, affecting the final outcome, which varies depending on the enzyme.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yin Peng ◽  
Yidan Xu ◽  
Xiaojing Zhang ◽  
Shiqi Deng ◽  
Yuan Yuan ◽  
...  

Abstract Background Circular RNA (circRNA), a subclass of non-coding RNA, plays a critical role in cancer tumorigenesis and metastasis. It has been suggested that circRNA acts as a microRNA sponge or a scaffold to interact with protein complexes; however, its full range of functions remains elusive. Recently, some circRNAs have been found to have coding potential. Methods To investigate the role of circRNAs in gastric cancer (GC), parallel sequencing was performed using five paired GC samples. Differentially expressed circAXIN1 was proposed to encode a novel protein. FLAG-tagged circRNA overexpression plasmid construction, immunoblotting, mass spectrometry, and luciferase reporter analyses were applied to confirm the coding potential of circAXIN1. Gain- and loss-of-function studies were conducted to study the oncogenic role of circAXIN1 and AXIN1-295aa on the proliferation, migration, invasion, and metastasis of GC cells in vitro and in vivo. The competitive interaction between AXIN1-295aa and adenomatous polyposis coli (APC) was investigated by immunoprecipitation analyses. Wnt signaling activity was observed using a Top/Fopflash assay, real-time quantitative RT-PCR, immunoblotting, immunofluorescence staining, and chromatin immunoprecipitation. Results CircAXIN1 is highly expressed in GC tissues compared with its expression in paired adjacent normal gastric tissues. CircAXIN1 encodes a 295 amino acid (aa) novel protein, which was named AXIN1-295aa. CircAXIN1 overexpression enhances the cell proliferation, migration, and invasion of GC cells, while the knockdown of circAXIN1 inhibits the malignant behaviors of GC cells in vitro and in vivo. Mechanistically, AXIN1-295aa competitively interacts with APC, leading to dysfunction of the “destruction complex” of the Wnt pathway. Released β-catenin translocates to the nucleus and binds to the TCF consensus site on the promoter, inducing downstream gene expression. Conclusion CircAXIN1 encodes a novel protein, AXIN1-295aa. AXIN1-295aa functions as an oncogenic protein, activating the Wnt signaling pathway to promote GC tumorigenesis and progression, suggesting a potential therapeutic target for GC.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2388
Author(s):  
Brendan Russ ◽  
Friedhelm Pfeiffer ◽  
Mike Dyall-Smith

Halovirus HF2 was the first member of the Haloferacalesvirus genus to have its genome fully sequenced, which revealed two classes of intergenic repeat (IR) sequences: class I repeats of 58 bp in length, and class II repeats of 29 bp in length. Both classes of repeat contain AT-rich motifs that were conjectured to represent promoters. In the present study, nine IRs were cloned upstream of the bgaH reporter gene, and all displayed promoter activity, providing experimental evidence for the previous conjecture. Comparative genomics showed that IR sequences and their relative genomic positions were strongly conserved among other members of the same virus genus. The transcription of HF2 was also examined by the reverse-transcriptase-PCR (RT-PCR) method, which demonstrated very long transcripts were produced that together covered most of the genome, and from both strands. The presence of long counter transcripts suggests a regulatory role or possibly unrecognized coding potential.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1246
Author(s):  
Maria Frolova ◽  
Sergey Yudin ◽  
Valentin Makarov ◽  
Olga Glazunova ◽  
Olga Alikina ◽  
...  

Alignment-free approaches employing short k-mers as barcodes for individual genomes have created a new strategy for taxonomic analysis and paved a way for high-resolution phylogeny. Here, we introduce this strategy for the Lacticaseibacillus paracasei species as a taxon requiring barcoding support for precise systematics. Using this approach for phylotyping of L. paracasei VKM B-1144 at the genus level, we identified four L. paracasei phylogroups and found that L. casei 12A belongs to one of them, rather than to the L. casei clade. Therefore, we propose to change the specification of this strain. At the genus level we found only one relative of L. paracasei VKM B-1144 among 221 genomes, complete or available in contigs, and showed that the coding potential of the genome of this “rare” strain allows its consideration as a potential probiotic component. Four sets of published metagenomes were used to assess the dependence of L. paracasei presence in the human gut microbiome on chronic diseases, dietary changes and antibiotic treatment. Only antibiotics significantly affected their presence, and strain-specific barcoding allowed the identification of the main scenarios of the adaptive response. Thus, suggesting bacteria of this species for compensatory therapy, we also propose strain-specific barcoding for selecting optimal strains for target microbiomes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shilin Yuan ◽  
Guanghong Liao ◽  
Menghuan Zhang ◽  
Yuanfei Zhu ◽  
Weidi Xiao ◽  
...  

AbstractHepatitis B Virus (HBV) constitutes a major threat to global public health. Current understanding of HBV-host interaction is yet limited. Here, ribosome profiling, quantitative mass spectrometry and RNA-sequencing were conducted on a recently established HBV replication system, through which we identified multiomic differentially expressed genes (DEGs) that HBV orchestrated to remodel host proteostasis networks. Our multiomics interrogation revealed that HBV induced significant changes in both transcription and translation of 35 canonical genes including PPP1R15A, PGAM5 and SIRT6, as well as the expression of at least 15 non-canonical open reading frames (ncORFs) including ncPON2 and ncGRWD1, thus revealing an extra coding potential of human genome. Overexpression of these five genes but not the enzymatically deficient SIRT6 mutants suppressed HBV replication while knockdown of SIRT6 had opposite effect. Furthermore, the expression of SIRT6 was down-regulated in patients, cells or animal models of HBV infection. Mechanistic study further indicated that SIRT6 directly binds to mini-chromosome and deacetylates histone H3 lysine 9 (H3K9ac) and histone H3 lysine 56 (H3K56ac), and chemical activation of endogenous SIRT6 with MDL800 suppressed HBV infection in vitro and in vivo. By generating the first multiomics landscape of host-HBV interaction, our work is thus opening a new avenue to facilitate therapeutic development against HBV infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Haiyun Zhang ◽  
Ruijuan Guan ◽  
Zili Zhang ◽  
Defu Li ◽  
Jingyi Xu ◽  
...  

Evidence of the involvement of long noncoding RNAs (lncRNAs) in the pathogenesis of chronic obstructive pulmonary disease (COPD) is growing but still largely unknown. This study aims to explore the expression, functions and molecular mechanisms of Fantom3_F830212L20, a lncRNA that transcribes in an antisense orientation to Nqo1.We name this lncRNA as Nqo1 antisense transcript 1 (Nqo1-AS1). The distribution, expression level and protein coding potential of Nqo1-AS1 were determined. The effects of Nqo1-AS1 on cigarette smoke (CS)-induced oxidative stress were also evaluated. The results showed that Nqo1-AS1 were mainly located in the cytoplasm of mouse alveolar epithelium and had a very low protein coding potential. Nqo1-AS1 (or its human homologue) was increased with the increase of CS exposure. Nqo1-AS1 overexpression enhanced the mRNA and protein levels of Nqo1 and Serpina1 mRNA expression, and attenuated CS-induced oxidative stress, whereas knockdown of Nqo1-AS1 significantly decreased Nqo1 and Serpina1 mRNA expressions, and aggravated CS-induced oxidative stress. Nqo1-AS1 increased Nqo1 mRNA stability and upregulated Nqo1 expression through antisense pairing with Nqo1 3′UTR. In conclusion, these results suggest that Nqo1-AS1 attenuates CS-induced oxidative stress by increasing Nqo1 mRNA stability and upregulating Nqo1 expression, which might serve as a novel approach for the treatment of COPD.


2021 ◽  
Author(s):  
Kaavya Subramanian ◽  
Nathan Waugh ◽  
Cole Shanks ◽  
David A Hendrix

All life depends on the reliable translation of RNA to protein according to complex interactions between translation machinery and RNA sequence features. While ribosomal occupancy and codon frequencies vary across coding regions, well-established metrics for computing coding potential of RNA do not capture such positional dependence. Here, we investigate position-dependent codon usage bias (PDCUB), which dynamically accounts for the position of protein-coding signals embedded within coding regions. We demonstrate the existence of PDCUB in the human transcriptome, and show that it can be used to predict translation-initiating codons with greater accuracy than other models. We further show that observed PDCUB is not accounted for by other common metrics, including position-dependent GC content, consensus sequences, and the presence of signal peptides in the translation product. More importantly, PDCUB defines a spectrum of translational efficiency supported by ribosomal occupancy and tRNA adaptation index (tAI). High PDCUB scores correspond to a tAI-defined translational ramp and low ribosomal occupancy, while low PDCUB scores exhibit a translational valley and the highest ribosomal occupancy. Finally, we examine the relationship between PDCUB intensity and functional enrichment. We find that transcripts with start codons showing the highest PDCUB are enriched for functions relating to the regulation of synaptic signaling and plasticity, as well as skeletal, heart, and nervous-system development. Furthermore, transcripts with high PDCUB are depleted for functions related to immune response and detection of chemical stimulus. These findings lay important groundwork for advances in our understanding of the regulation of translation, the calculation of coding potential, and the classification of RNA transcripts.


2021 ◽  
Vol 22 (15) ◽  
pp. 7810
Author(s):  
Shital Kumar Mishra ◽  
Taole Liu ◽  
Han Wang

Noncoding RNAs have been known to contribute to a variety of fundamental life processes, such as development, metabolism, and circadian rhythms. However, much remains unrevealed in the huge noncoding RNA datasets, which require further bioinformatic analysis and experimental investigation—and in particular, the coding potential of lncRNAs and the functions of lncRNA-encoded peptides have not been comprehensively studied to date. Through integrating the time-course experimentation with state-of-the-art computational techniques, we studied tens of thousands of zebrafish lncRNAs from our own experiments and from a published study including time-series transcriptome analyses of the testis and the pineal gland. Rhythmicity analysis of these data revealed approximately 700 rhythmically expressed lncRNAs from the pineal gland and the testis, and their GO, COG, and KEGG pathway functions were analyzed. Comparative and conservative analyses determined 14 rhythmically expressed lncRNAs shared between both the pineal gland and the testis, and 15 pineal gland lncRNAs as well as 3 testis lncRNAs conserved among zebrafish, mice, and humans. Further, we computationally analyzed the conserved lncRNA-encoded peptides, and revealed three pineal gland and one testis lncRNA-encoded peptides conserved among these three species, which were further investigated for their three-dimensional (3D) structures and potential functions. Our computational findings provided novel annotations and regulatory mechanisms for hundreds of rhythmically expressed pineal gland and testis lncRNAs in zebrafish, and set the stage for their experimental studies in the near future.


Sign in / Sign up

Export Citation Format

Share Document