outdoor weathering
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 24)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Hung-Shuo Chang ◽  
PAN FENG ◽  
Yadong Lyu ◽  
Chiao-Chi Lin

Abstract In realistic applications, silver nanowires (AgNWs) are encapsulated in optoelectrical devices to function as transparent conductors and electrodes. Environmental stressors along with the essential electrical stress are inevitably harmful to the AgNWs inside the devices. Herein, to investigate the degradation behavior discrepancy between materials-level and device-level tests, we adopted pseudo-module to mimic the encapsulation. The pseudo-module allows the application of electrical stress and facilitates the interim specimen access for materials characterization through assembly-disassembly. Indoor accelerated and outdoor weathering tests with applied electrical stress to the pseudo-module encapsulated AgNW networks were performed. The impaired optoelectrical properties and morphological changes of AgNWs due to multiple or individual stressor(s) are investigated. Results indicate UVA exposure at elevated temperature coupled with electrical stress is responsible for the electrical failure of AgNW networks. Sulfidation that depresses optical transparency of AgNW networks is prone to occur at lower temperature. This work provides unambiguous degradation behaviors of AgNWs inside encapsulants, helping to improve the design of AgNWs related optoelectrical devices in the applications of solar irradiation environments.


Cellulose ◽  
2021 ◽  
Author(s):  
Sebastian Dahle ◽  
Megi Pilko ◽  
Jure Žigon ◽  
Rok Zaplotnik ◽  
Marko Petrič ◽  
...  

AbstractThe development of a simple surface barrier discharge plasma device is presented to enable more widespread access to and utilization of plasma technology. The application of the plasma device was demonstrated for pretreatment of wood prior to application of protective coatings for outdoor usage. The coatings' overall performance was increased, showing a reduction or absence of cracking due to weathering on plasma-pretreated specimens. Moreover, after ten months of outdoor weathering, the plasma-pretreated specimens showed fewer infections with biotic factors and improved adhesion performance in cross-cut tests, while the surface gloss performed independently from plasma pretreatment. In contrast to that, plasma-pretreated specimens were slightly more prone to discoloration due to outdoor weathering, whereas the plasma pretreatment did not impact the initial color after coating application. Graphic abstract


mSystems ◽  
2021 ◽  
Vol 6 (3) ◽  
Author(s):  
E. Anders Kiledal ◽  
Jessica L. Keffer ◽  
Julia A. Maresca

ABSTRACT Concrete is an extreme but common environment and is home to microbial communities adapted to alkaline, saline, and oligotrophic conditions. Microbes inside the concrete that makes up buildings or roads have received little attention despite their ubiquity and capacity to interact with the concrete. Because concrete is a composite of materials which have their own microbial communities, we hypothesized that the microbial communities of concrete reflect those of the concrete components and that these communities change as the concrete ages. Here, we used a 16S amplicon study to show how microbial communities change over 2 years of outdoor weathering in two sets of concrete cylinders, one prone to the concrete-degrading alkali-silica reaction (ASR) and the other having the risk of the ASR mitigated. After identifying and removing taxa that were likely laboratory or reagent contaminants, we found that precursor materials, particularly the large aggregate (gravel), were the probable source of ∼50 to 60% of the bacteria observed in the first cylinders from each series. Overall, community diversity decreased over 2 years, with temporarily increased diversity in warmer summer months. We found that most of the concrete microbiome was composed of Proteobacteria, Firmicutes, and Actinobacteria, although community composition changed seasonally and over multiyear time scales and was likely influenced by environmental deposition. Although the community composition between the two series was not significantly different overall, several taxa, including Arcobacter, Modestobacter, Salinicoccus, Rheinheimera, Lawsonella, and Bryobacter, appear to be associated with ASR. IMPORTANCE Concrete is the most-used building material in the world and a biologically extreme environment, with a microbiome composed of bacteria that likely come from concrete precursor materials, aerosols, and environmental deposition. These microbes, though seeded from a variety of materials, are all subject to desiccation, heating, starvation, high salinity, and very high pH. Microbes that survive and even thrive under these conditions can potentially either degrade concrete or contribute to its repair. Thus, understanding which microbes survive in concrete, under what conditions, and for how long has potential implications for biorepair of concrete. Further, methodological pipelines for analyzing concrete microbial communities can be applied to concrete from a variety of structures or with different types of damage to identify bioindicator species that can be used for structural health monitoring and service life prediction.


2021 ◽  
Author(s):  
◽  
Errj Sansonetti

Wood has great potential for uses in outdoor conditions, but it can be easily degraded due to the action of environmental factors (solar radiation, moisture, fungi, insects, etc.). The protection of wood is therefore a very actual research topic, and it is also the object of this work. The main goal of this Doctoral Thesis is to obtain a water-based alkyd paint formulation in the form of emulsion and to optimize its composition with necessary additives, in particular, with nanosized red iron oxide pigments which can protect the decorative qualities of thermally treated wood (TTW) during outdoor exposure. In the literature review, the main factors responsible for the degradation of wood and their effect on the structure and properties of wood are summarized. The chemistry of coatings for the protection of wood and the challenges that are faced in reformulation of paints, due to more stringent regulations which limit the use of organic solvents and promote greener alternatives, like water-based paint formulations, are considered. In Europe, this is stated by the Directive 2004/42/EC of the European Parliament on the limitation of emissions of volatile organic compounds (VOC) from decorative paints and varnishes. In the first part of the experimental section, the optimal composition of the alkyd emulsion and the effects of additives on the film properties have been investigated. The different chemo-physical properties of thermally treated wood compared with those of untreated wood have been also evaluated. After thermal modification, wood becomes more hydrophobic and this has been confirmed from the changes of the surface energy of thermally treated wood: the polar component of the surface energy decreases with increasing temperature of thermal modification. In the second part of the experimental section, artificial and outdoor weathering tests have been done to determine the suitable concentration of red iron oxide nanoparticles which can give better protection against photodegradation. Results show that red iron oxide pigments at a concentration of 8 % in alkyd emulsion are efficient to protect the wood surface against discoloration. During the outdoor weathering test, the performance of alkyd emulsion has been compared with that of the solvent-based formulation. Results confirm that the water-based alkyd emulsion gives better protection of the thermally treated wood surface than the solvent-based formulation, thus confirming that the replacement of organic solvent with water gives a product with equivalent or better properties for the protection of thermally treated wood in outdoor conditions.


2021 ◽  
Author(s):  
Sebastian Dahle ◽  
Megi Pilko ◽  
Jure Žigon ◽  
Rok Zaplotnik ◽  
Marko Petrič ◽  
...  

Abstract The development of a simple surface barrier discharge plasma device is presented to enable more widespread access to and utilization of plasma technology. The application of the plasma device was demonstrated for pretreatment of wood prior to application of protective coatings for outdoor usage. The coatings' overall performance was increased, showing a reduction or absence of cracking due to weathering on plasma-pretreated specimens. Moreover, after ten months of outdoor weathering, the plasma-pretreated specimens showed fewer infections with biotic factors and improved adhesion performance in cross-cut tests, while the surface gloss performed independently from plasma pretreatment. In contrast to that, plasma-pretreated specimens were slightly more prone to discoloration due to outdoor weathering, whereas the plasma pretreatment did not impact the initial color after coating application.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Dace Cirule ◽  
Errj Sansonetti ◽  
Ingeborga Andersone ◽  
Edgars Kuka ◽  
Bruno Andersons

Thermal modification of wood has gained its niche in the production of materials that are mainly used for outdoor applications, where the stability of aesthetic appearances is very important. In the present research, spectral sensitivity to discoloration of thermally modified (TM) aspen wood was assessed and, based on these results, the possibility to delay discoloration due to weathering by non-film forming coating containing transparent iron oxides in the formulation was studied. The effect of including organic light stabilizers (UVA and HALS) in coatings as well as pretreatment with lignin stabilizer (HALS) was evaluated. Artificial and outdoor weathering was used for testing the efficiency of different coating formulations on TM wood discoloration. For color measurements and discoloration assessment, the CIELAB color model was used. Significant differences between the spectral sensitivity of unmodified and TM wood was observed by implying that different strategies could be effective for their photostabilization. From the studied concepts, the inclusion of the transparent red iron oxide into the base formulation of the non-film forming coating was found to be the most effective approach for enhancing TM wood photostability against discoloration due to weathering.


Author(s):  
Ahmed Mushfiqur Rahman ◽  
Nafij Bin Jamayet ◽  
Md Minhaz Ul Islam Nizami ◽  
Yanti Johari ◽  
Adam Husein ◽  
...  

Author(s):  
Takahiro Yoshida ◽  
Katsushi Kuroda ◽  
Daisuke Kamikawa ◽  
Yoshitaka Kubojima ◽  
Takashi Nomura ◽  
...  

To examine the hydrophobicity of torrefied wood fuel, the water resistances of torrefied pellets prepared by two different methods were evaluated using exposure tests under indoor and outdoor conditions. Torrefied pellets from the xylem of Japanese cedar (Sugi, Cryptomeria japonica) and oak (Konara, Quercus serrata) were prepared by two methods: the torrefaction of wood chips followed by pelletization and the pelletization of wood chips followed by torrefaction. It was found that the pellets prepared by pelletization followed by torrefaction had much lower moisture levels than those prepared by the other method and they showed almost no change in diameter after an outdoor weathering test. These characteristics are unique and indicate that the pellets can be applied not only for industrial use but also for residential and commercial purposes.


Sign in / Sign up

Export Citation Format

Share Document