oxygen availability
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 107)

H-INDEX

51
(FIVE YEARS 5)

Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 45
Author(s):  
Qi Yang ◽  
Wenli Lin ◽  
Jiawei Xu ◽  
Nan Guo ◽  
Jiachen Zhao ◽  
...  

Bioreactor scale-up from the laboratory scale to the industrial scale has always been a pivotal step in bioprocess development. However, the transition of a bioeconomy from innovation to commercialization is often hampered by performance loss in titer, rate and yield. These are often ascribed to temporal variations of substrate and dissolved oxygen (for instance) in the environment, experienced by microorganisms at the industrial scale. Oscillations in dissolved oxygen (DO) concentration are not uncommon. Furthermore, these fluctuations can be exacerbated with poor mixing and mass transfer limitations, especially in fermentations with filamentous fungus as the microbial cell factory. In this work, the response of glucose-limited chemostat cultures of an industrial Penicillium chrysogenum strain to different dissolved oxygen levels was assessed under both DO shift-down (60% → 20%, 10% and 5%) and DO ramp-down (60% → 0% in 24 h) conditions. Collectively, the results revealed that the penicillin productivity decreased as the DO level dropped down below 20%, while the byproducts, e.g., 6-oxopiperidine-2-carboxylic acid (OPC) and 6-aminopenicillanic acid (6APA), accumulated. Following DO ramp-down, penicillin productivity under DO shift-up experiments returned to its maximum value in 60 h when the DO was reset to 60%. The result showed that a higher cytosolic redox status, indicated by NADH/NAD+, was observed in the presence of insufficient oxygen supply. Consistent with this, flux balance analysis indicated that the flux through the glyoxylate shunt was increased by a factor of 50 at a DO value of 5% compared to the reference control, favoring the maintenance of redox status. Interestingly, it was observed that, in comparison with the reference control, the penicillin productivity was reduced by 25% at a DO value of 5% under steady state conditions. Only a 14% reduction in penicillin productivity was observed as the DO level was ramped down to 0. Furthermore, intracellular levels of amino acids were less sensitive to DO levels at DO shift-down relative to DO ramp-down conditions; this difference could be caused by different timescales between turnover rates of amino acid pools (tens of seconds to minutes) and DO switches (hours to days at steady state and minutes to hours at ramp-down). In summary, this study showed that changes in oxygen availability can lead to rapid metabolite, flux and productivity responses, and dynamic DO perturbations could provide insight into understanding of metabolic responses in large-scale bioreactors.


2021 ◽  
Vol 12 ◽  
Author(s):  
Philip J. Prins ◽  
Jeffrey D. Buxton ◽  
Tyler S. McClure ◽  
Dominic P. D’Agostino ◽  
Dana L. Ault ◽  
...  

Exogenous ketone esters have demonstrated the capacity to increase oxygen availability during acute hypoxic exposure leading to the potential application of their use to mitigate performance declines at high altitudes. Voluntary hypoventilation (VH) with exercise reliably reduces oxygen availability and increases carbon dioxide retention without alterations to ambient pressure or gas content. Utilizing a double-blind randomized crossover design, fifteen recreational male distance runners performed submaximal exercise (4 × 5 min; 70% VO2 Max) with VH. An exogenous ketone ester (KME; 573 mg⋅kg–1) or iso-caloric flavor matched placebo (PLA) was consumed prior to exercise. Metabolites, blood gases, expired air, heart rate, oxygen saturation, cognition, and perception metrics were collected throughout. KME rapidly elevated R-β-hydroxybutyrate and reduced blood glucose without altering lactate production. KME lowered pH, bicarbonate, and total carbon dioxide. VH with exercise significantly reduced blood (SpO2) and muscle (SmO2) oxygenation and increased cognitive mean reaction time and respiratory rate regardless of condition. KME administration significantly elevated respiratory exchange ratio (RER) at rest and throughout recovery from VH, compared to PLA. Blood carbon dioxide (PCO2) retention increased in the PLA condition while decreasing in the KME condition, leading to a significantly lower PCO2 value immediately post VH exercise (IPE; p = 0.031) and at recovery (p = 0.001), independent of respiratory rate. The KME’s ability to rapidly alter metabolism, acid/base balance, CO2 retention, and respiratory exchange rate independent of respiratory rate changes at rest, during, and/or following VH exercise protocol illustrates a rapid countermeasure to CO2 retention in concert with systemic metabolic changes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ivan Lopez ◽  
Reinaldo Aravena ◽  
Daniel Soza ◽  
Alicia Morales ◽  
Silvia Riquelme ◽  
...  

The Chilean workforce has over 200,000 people that are intermittently exposed to altitudes over 4,000 m. In 2012, the Ministry of Health provided a technical guide for high-altitude workers that included a series of actions to mitigate the effects of hypoxia. Previous studies have shown the positive effect of oxygen enrichment at high altitudes. The Atacama Large Millimeter/submillimeter Array (ALMA) radiotelescope operates at 5,050 m [Array Operations Site (AOS)] and is the only place in the world where pressure swing adsorption (PSA) and liquid oxygen technologies have been installed at a large scale. These technologies reduce the equivalent altitude by increasing oxygen availability. This study aims to perform a retrospective comparison between the use of both technologies during operation in ALMA at 5,050 m. In each condition, variables such as oxygen (O2), temperature, and humidity were continuously recorded in each AOS rooms, and cardiorespiratory variables were registered. In addition, we compared portable O2 by using continuous or demand flow during outdoor activities at very high altitudes. The outcomes showed no differences between production procedures (PSA or liquid oxygen) in regulating oxygen availability at AOS facilities. As a result, big-scale installations have difficulties reaching the appropriate O2 concentration due to leaks in high mobility areas. In addition, the PSA plant requires adequacy and maintenance to operate at a very high altitude. A continuous flow of 2–3 l/min of portable O2 is recommended at 5,050 m.


2021 ◽  
pp. 212-219
Author(s):  
Carmen Cecilia Espíndola Díaz
Keyword(s):  

2021 ◽  
Vol 75 (1) ◽  
pp. 923-932
Author(s):  
Dagmara Otto-Ślusarczyk ◽  
Wojciech Graboń ◽  
Magdalena Mielczarek-Puta ◽  
Alicja Chrzanowska ◽  
Anna Barańczyk-Kuźma

Abstract Introduction Glutaminolysis, beside glycolysis, is a key metabolic pathway of a cancer cell that provides energy and substrates for the synthesis of nucleic acids, proteins, and lipids. The pathway is mediated by both mitochondrial and cytosolic enzymes. Neither expression of glutaminolysis enzymes in colon cancer cells nor the influence of various oxygen concentrations on their expression has been studied so far. Objectives The aim of the study was to determine and compare the mRNA expression of enzymes involved in glutaminolysis at various oxygen levels in human primary (SW480) and metastatic (SW620) colon cancer cells cultured in 1% O2 (hypoxia), 10% O2 (tissue normoxia), 21% O2 (atmospheric normoxia). Methods Cell viability was determined by Trypan Blue exclusion (TB) and Thiazolyl Blue Tetrazolium Bromide (MTT). The expression of HIF1α, GLUT1, GLS1, AST1, AST2, ACL, PC and GC1, GC2 at mRNA levelwas determined by RT-qPCR. Results. Correlation between increasing oxygen concentration and cell count was not observed. In both cell lines the number of viable cells was the lowest at 10% oxygen. The enzyme profile and expression of proteins involved in glutaminolysis varied depending on oxygen pressure and type of cell lines. In summary, our findings suggest differences in metabolic adaptation to oxygen availability in vivo between primary and metastatic colon cancer cells.


Author(s):  
Gregory G. Vandenberg ◽  
Aasritha Thotakura ◽  
Angela L. Scott

Fragile X syndrome is a genetic disorder that is characterized by a range of cognitive and behavioural deficits, including mild-moderate intellectual disability. The disease is characterized by an X-linked mutation of the Fmr1 gene, which causes silencing of the gene coding for FMRP, a translational regulator integral for neurodevelopment. Mitochondrial dysfunction has been recently associated with FXS, with reports of increases in oxidative stress markers, reactive oxygen species, and lipid peroxidation being present in brain tissue. Astrocytes, a prominent glial cell within the CNS, plays a large role in regulating oxidative homeostasis within the developing brain and dysregulation of astrocyte redox balance in FXS may contribute to oxidative stress. Astrocyte function and mitochondrial bioenergetics is significantly influenced by oxygen availability as well as circulating sex hormones; yet these parameters are rarely considered during in vitro experimentation. Given that the brain normally develops in a range of hypoxic conditions and FXS is a sex-linked genetic disorder, we investigated how different oxygen levels (normoxic versus hypoxic) and biological sex affected mitochondrial bioenergetics of astrocytes in FXS. Our results show demonstrate that both mitochondrial respiration capacity and reactive oxygen species emission are altered with Fmr1 deletion in astrocytes and these changes were dependent upon both sexual dimorphism and oxygen availability.


Author(s):  
Brooke L. Bodensteiner ◽  
Eric J. Gangloff ◽  
Laura Kouyoumdjian ◽  
Martha M. Muñoz ◽  
Fabien Aubret

In response to a warming climate, many montane species are shifting upslope to track the emergence of preferred temperatures. Characterizing patterns of variation in metabolic, physiological, and thermal traits along an elevational gradient, and the plastic potential of these traits, is necessary to understand current and future responses to abiotic constraints at high elevations, including limited oxygen availability. We performed a transplant experiment with the upslope-colonizing common wall lizard (Podarcis muralis) in which we measured nine aspects of thermal physiology and aerobic capacity in lizards from replicate low- (400 m above sea level [ASL]) and high-elevation (1700 m ASL) populations. We first measured traits at their elevation of origin and then transplanted half of each group to extreme high elevation (2900 m ASL; above the current elevational range limit of this species), where oxygen availability is reduced by ∼25% relative to sea level. After three weeks of acclimation, we again measured these traits in both the transplanted and control groups. The multivariate thermal-metabolic phenotypes of lizards originating from different elevations differed clearly when measured at the elevation of origin. For example, high-elevation lizards are more heat tolerant than low-elevation counterparts (countergradient variation). Yet, these phenotypes converged after exposure to reduced oxygen availability at extreme high elevation, suggesting limited plastic responses under this novel constraint. Our results suggest that high-elevation populations are well-suited to their oxygen environments, but that plasticity in the thermal-metabolic phenotype does not pre-adapt these populations to colonize more hypoxic environments at higher elevations.


Author(s):  
Kshitij Gurung ◽  
Travis H. James ◽  
Angel Torres ◽  
Alexander Sinitskii ◽  
Marjorie A. Langell

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2937
Author(s):  
Michelle A. Miguel ◽  
Seon-Ho Kim ◽  
Sang-Suk Lee ◽  
Yong-Il Cho

The impact of soil with an intact microbial community and oxygen availability on moisture content, soil pH, and bacterial communities during decomposition of poultry carcasses was investigated. Poultry carcasses were decomposed in soil with or without a microbial community, under aerobic or anaerobic conditions. The samples collected in each microcosm burial set-up were analyzed by targeted 16S rRNA amplicon sequencing and Amplicon sequence variants (ASV) method. Our results showed that moisture was high in the burial set-ups under anaerobic conditions and pH was high in the burial set-ups under aerobic conditions. Meanwhile, the Chao1 and Shannon index significantly differed between the different burial set-ups and across different time points. In addition, bacterial taxa composition during the early period of decomposition differed from that of the late period. A total of 23 phyla, 901 genera, and 1992 species were identified. Firmicutes was the most dominant phyla in all burial set-ups throughout the decomposition. At day 60, Pseudogracilibacillus was dominant in the burial set-ups under aerobic conditions, while Lentibacillus dominated in the burial set-ups under anaerobic conditions. This study demonstrated that the soil microbial community and availability of oxygen significantly affected the changes in moisture content, pH, and bacterial composition during the decomposition process.


Sign in / Sign up

Export Citation Format

Share Document