mixed microbial cultures
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 50)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 12 ◽  
Author(s):  
Kanchan Samadhiya ◽  
Rimjhim Sangtani ◽  
Regina Nogueira ◽  
Kiran Bala

Impetuous urbanization and population growth are driving increased demand for plastics to formulate impeccable industrial and biomedical commodities. The everlasting nature and excruciating waste management of petroleum-based plastics have catered to numerous challenges for the environment. However, just implementing various end-of-life management techniques for assimilation and recycling plastics is not a comprehensive remedy; instead, the extensive reliance on finite resources needs to be reduced for sustainable production and plastic product utilization. Microorganisms, such as bacteria and algae, are explored substantially for their bioplastic production repertoire, thus replacing fossil-based plastics sooner or later. Nevertheless, the utilization of pure microbial cultures has led to various operational and economical complications, opening the ventures for the usage of mixed microbial cultures (MMCs) consisting of bacteria and algae for sustainable production of bioplastic. The current review is primarily focuses on elaborating the bioplastic production capabilities of different bacterial and algal strains, followed by discussing the quintessence of MMCs. The present state-of-the-art of bioplastic, different types of bacterial bioplastic, microalgal biocomposites, operational factors influencing the quality and quantity of bioplastic precursors, embracing the potential of bacteria-algae consortia, and the current global status quo of bioplastic production has been summarized extensively.


2022 ◽  
pp. 265-284
Author(s):  
Ilke Pala-Ozkok ◽  
Gülsüm Emel Zengin ◽  
Didem Okutman Taş ◽  
Nevin Yağcı ◽  
Didem Güven ◽  
...  

Author(s):  
Gloria Bravo-Porras ◽  
Luis A. Fernández-Güelfo ◽  
Carlos J. Álvarez-Gallego ◽  
María Carbú ◽  
Diego Sales ◽  
...  

AbstractPolyhydroxyalkanoates (PHAs) production from lignocellulosic biomass using mixed microbial cultures (MMC) is a potential cheap alternative for reducing the use of petroleum-based plastics. In this study, an MMC adapted to acidogenic effluent from dark fermentation (DF) of exhausted sugar beet cossettes (ESBC) has been tested in order to determine its capability to produce PHAs from nine different synthetic mixtures of volatile fatty acids (VFAs). The tests consisted of mixtures of acetic, propionic, butyric, and valeric acids in the range of 1.5–9.0 g/L of total acidity and with three different valeric:butyric ratios (10:1, 1:1, and 1:10). Experimental results have shown a consistent preference of the MMC for the butyric and valeric acids as carbon source instead other shorter acids (propionic or acetic) in terms of PHA production yield (estimated in dry cell weight basis), with a maximum value of 23% w/w. Additionally, valeric-rich mixtures have demonstrated to carry out a fast degradation process but with poor final PHA production compared with high butyric mixtures. Finally, high initial butyric and valeric concentrations (1.1 g/L and 4.1 g/L) have demonstrated to be counterproductive to PHA production.


Author(s):  
Neda Amanat ◽  
Bruna Matturro ◽  
Marianna Villano ◽  
Laura Lorini ◽  
Marta Maria Rossi ◽  
...  

Author(s):  
Francisco Cabrera ◽  
Álvaro Torres-Aravena ◽  
Fernanda Pinto-Ibieta ◽  
José Luis Campos ◽  
David Jeison

Production of polyhydroxyalkanoates (PHA) has generated great interest as building blocks for bioplastic production. Their production using mixed microbial cultures represents an interesting alternative, since it enables the use of organic wastes as a carbon source. Feast/famine strategy is a common way to promote selection of microorganisms with PHA accumulation capacity. However, when using waste sources, changes in substrate concentration are expected, that may affect performance and efficiency of the process. This study showed how the dissolved oxygen level can be used for online control of the cycle time, ensuring that the desired feast/famine ratio is effectively applied. An operation strategy is presented and validated, using sequential batch reactors fed with acetate as the carbon source. Production of polyhydroxybutyrate (PHB) was studied, which is the expected type of PHA to be synthetized when using acetate as substrate. Two reactors were operated by applying the proposed control strategy, to provide F/F ratios of 0.2 and 0.6, respectively. A third reactor was operated with a fixed cycle time, for comparison purposes. Results showed that the reactor that operated at an F/F ratio of 0.6 promoted higher biomass productivity and PHB content, as a result of a better use of available time, preventing unnecessary long famine times. The application of the tested strategy is a simple a reliable way to promote a better performance of feast/famine-based bioreactors involving mixed microbial cultures for PHB production.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6545
Author(s):  
Lorena Serrano-González ◽  
Daniel Merino-Maldonado ◽  
Manuel Ignacio Guerra-Romero ◽  
Julia María Morán-Del Pozo ◽  
Paulo Costa Lemos ◽  
...  

One approach to tackle the problems created by the vast amounts of construction and demolition waste (CDW) generated worldwide while at the same time lengthening concrete durability and service life is to foster the use of recycled aggregate (RA) rather than natural aggregate (NA). This article discusses the use of polyhydroxyalkanoates (PHAs)-producing mixed microbial cultures (MMCs) to treat the surface of recycled concrete with a view to increase its resistance to water-mediated deterioration. The microorganisms were cultured in a minimal medium using waste pinewood bio-oil as a carbon source. Post-application variations in substrate permeability were determined with the water drop absorption and penetration by water under pressure tests. The significant reduction in water absorption recorded reveals that this bioproduct is a promising surface treatment for recycled concrete.


Sign in / Sign up

Export Citation Format

Share Document