feature attention
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 72)

H-INDEX

12
(FIVE YEARS 6)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 118
Author(s):  
Yu Sun ◽  
Rongrong Ni ◽  
Yao Zhao

Up to now, most of the forensics methods have attached more attention to natural content images. To expand the application of image forensics technology, forgery detection for certificate images that can directly represent people’s rights and interests is investigated in this paper. Variable tampered region scales and diverse manipulation types are two typical characteristics in fake certificate images. To tackle this task, a novel method called Multi-level Feature Attention Network (MFAN) is proposed. MFAN is built following the encoder–decoder network structure. In order to extract features with rich scale information in the encoder, on the one hand, we employ Atrous Spatial Pyramid Pooling (ASPP) on the final layer of a pre-trained residual network to capture the contextual information at different scales; on the other hand, low-level features are concatenated to ensure the sensibility to small targets. Furthermore, the resulting multi-level features are recalibrated on channels for irrelevant information suppression and enhancing the tampered regions, guiding the MFAN to adapt to diverse manipulation traces. In the decoder module, the attentive feature maps are convoluted and unsampled to effectively generate the prediction mask. Experimental results indicate that the proposed method outperforms some state-of-the-art forensics methods.


Author(s):  
Fansheng Li ◽  
Xiaoguang Di ◽  
Changdi Zhao ◽  
Yi Zheng ◽  
Shuanghong Wu
Keyword(s):  

2021 ◽  
Vol 13 (23) ◽  
pp. 4820
Author(s):  
Xiaoxu Liu ◽  
Weihua Bai ◽  
Junming Xia ◽  
Feixiong Huang ◽  
Cong Yin ◽  
...  

Based on deep learning, this paper proposes a new hybrid neural network model, a recurrent deep neural network using a feature attention mechanism (FA-RDN) for GNSS-R global sea surface wind speed retrieval. FA-RDN can process data from the Cyclone Global Navigation Satellite System (CYGNSS) satellite mission, including characteristics of the signal, spatio-temporal, geometry, and instrument. FA-RDN can receive data extended in temporal dimension and mine the temporal correlation information of features through the long-short term memory (LSTM) neural network layer. A feature attention mechanism is also added to improve the model’s computational efficiency. To evaluate the model performance, we designed comparison and validation experiments for the retrieval accuracy, enhancement effect, and stability of FA-RDN by comparing the evaluation criteria results. The results show that the wind speed retrieval root mean square error (RMSE) of the FA-RDN model can reach 1.45 m/s, 10.38%, 6.58%, 13.28%, 17.89%, 20.26%, and 23.14% higher than that of Backpropagation Neural Network (BPNN), Recurrent Neural Network (RNN), Artificial Neural Network (ANN), Random Forests (RF), eXtreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR), respectively, confirming the feasibility and effectiveness of the designed method. At the same time, the designed model has better stability and applicability, serving as a new research idea of data mining and feature selection, as well as a reference model for GNSS-R-based sea surface wind speed retrieval.


2021 ◽  
Author(s):  
Jie Zhang ◽  
Xiaocang Zhu ◽  
Shanshan Wang ◽  
Hossein Esteky ◽  
Yonghong Tian ◽  
...  

Visual search depends on both the foveal and peripheral visual system, yet the foveal attention mechanisms is still lack of insights. We simultaneously recorded the foveal and peripheral activities in V4, IT and LPFC, while monkeys performed a category-based visual search task. Feature attention enhanced responses of Face-selective, House-selective, and Non-selective foveal cells in visual cortex. While foveal attention effects appeared no matter the peripheral attention effects, paying attention to the foveal stimulus dissipated the peripheral feature attentional effects, and delayed the peripheral spatial attentional effects. When target features appeared both in the foveal and the peripheral, feature attention effects seemed to occur predominately in the foveal, which might not distribute across the visual field according to common view of distributed feature attention effects. As a result, the parallel attentive process seemed to occur during distractor fixations, while the serial process predominated during target fixations in visual search.


2021 ◽  
Vol 13 (21) ◽  
pp. 4262
Author(s):  
Hanjie Wu ◽  
Dan Li ◽  
Yujian Wang ◽  
Xiaojun Li ◽  
Fanqiang Kong ◽  
...  

Although most of deep-learning-based hyperspectral image (HSI) classification methods achieve great performance, there still remains a challenge to utilize small-size training samples to remarkably enhance the classification accuracy. To tackle this challenge, a novel two-branch spectral–spatial-feature attention network (TSSFAN) for HSI classification is proposed in this paper. Firstly, two inputs with different spectral dimensions and spatial sizes are constructed, which can not only reduce the redundancy of the original dataset but also accurately explore the spectral and spatial features. Then, we design two parallel 3DCNN branches with attention modules, in which one focuses on extracting spectral features and adaptively learning the more discriminative spectral channels, and the other focuses on exploring spatial features and adaptively learning the more discriminative spatial structures. Next, the feature attention module is constructed to automatically adjust the weights of different features based on their contributions for classification to remarkably improve the classification performance. Finally, we design the hybrid architecture of 3D–2DCNN to acquire the final classification result, which can significantly decrease the sophistication of the network. Experimental results on three HSI datasets indicate that our presented TSSFAN method outperforms several of the most advanced classification methods.


Author(s):  
Syed Khurram Jah Rizvi ◽  
Warda Aslam ◽  
Muhammad Shahzad ◽  
Shahzad Saleem ◽  
Muhammad Moazam Fraz

AbstractEnterprises are striving to remain protected against malware-based cyber-attacks on their infrastructure, facilities, networks and systems. Static analysis is an effective approach to detect the malware, i.e., malicious Portable Executable (PE). It performs an in-depth analysis of PE files without executing, which is highly useful to minimize the risk of malicious PE contaminating the system. Yet, instant detection using static analysis has become very difficult due to the exponential rise in volume and variety of malware. The compelling need of early stage detection of malware-based attacks significantly motivates research inclination towards automated malware detection. The recent machine learning aided malware detection approaches using static analysis are mostly supervised. Supervised malware detection using static analysis requires manual labelling and human feedback; therefore, it is less effective in rapidly evolutionary and dynamic threat space. To this end, we propose a progressive deep unsupervised framework with feature attention block for static analysis-based malware detection (PROUD-MAL). The framework is based on cascading blocks of unsupervised clustering and features attention-based deep neural network. The proposed deep neural network embedded with feature attention block is trained on the pseudo labels. To evaluate the proposed unsupervised framework, we collected a real-time malware dataset by deploying low and high interaction honeypots on an enterprise organizational network. Moreover, endpoint security solution is also deployed on an enterprise organizational network to collect malware samples. After post processing and cleaning, the novel dataset consists of 15,457 PE samples comprising 8775 malicious and 6681 benign ones. The proposed PROUD-MAL framework achieved an accuracy of more than 98.09% with better quantitative performance in standard evaluation parameters on collected dataset and outperformed other conventional machine learning algorithms. The implementation and dataset are available at https://bit.ly/35Sne3a.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ze Lin Tan ◽  
Jing Bai ◽  
Shao Min Zhang ◽  
Fei Wei Qin

AbstractIn an image based virtual try-on network, both features of the target clothes and the input human body should be preserved. However, current techniques failed to solve the problems of blurriness on complex clothes details and artifacts on human body occlusion regions at the same time. To tackle this issue, we propose a non-local virtual try-on network NL-VTON. Considering that convolution is a local operation and limited by its convolution kernel size and rectangular receptive field, which is unsuitable for large size non-rigid transformations of persons and clothes in virtual try-on, we introduce a non-local feature attention module and a grid regularization loss so as to capture detailed features of complex clothes, and design a human body segmentation prediction network to further alleviate the artifacts on occlusion regions. The quantitative and qualitative experiments based on the Zalando dataset demonstrate that our proposed method significantly improves the ability to preserve features of bodies and clothes compared with the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document