Murine Leukemia
Recently Published Documents





2022 ◽  
Vol 18 ◽  
pp. 110-119
Yasuhiro Igarashi ◽  
Yiwei Ge ◽  
Tao Zhou ◽  
Amit Raj Sharma ◽  
Enjuro Harunari ◽  

HPLC/DAD-based chemical investigation of a coral-associated gliding bacterium of the genus Tenacibaculum yielded three desferrioxamine-class siderophores, designated tenacibactins K (1), L (2), and M (3). Their chemical structures, comprising repeated cadaverine–succinic acid motifs terminated by a hydroxamic acid functionality, were elucidated by NMR and negative MS/MS experiments. Compounds 1–3 were inactive against bacteria and a yeast but displayed cytotoxicity against 3Y1 rat embryonic fibroblasts and P388 murine leukemia cells at GI50 in submicromolar to micromolar ranges. Their iron-chelating activity was comparable to deferoxamine mesylate.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1168-1168
John P Brabson ◽  
Tiffany Leesang ◽  
Byron Fang ◽  
Jingjing Wang ◽  
Victoria Strippoli ◽  

Abstract Poly-ADP-ribose polymerase inhibitors (PARPi) are currently in clinical trial to determine their therapeutic efficacy for the treatment of acute myeloid leukemia (AML). We have shown that vitamin C (VitC), an essential micronutrient and co-factor of Ten-Eleven translocation (TET) proteins, enhances AML sensitivity to PARPi, potentially due to an increased dependency on base-excision repair (BER) enzymes needed to remove TET-catalyzed oxidized methylcytosine bases via active DNA demethylation. TET2 is the most frequently mutated TET gene in patients with AML, and vitamin C treatment can mimic genetic restoration of TET2 function, leading to DNA demethylation, differentiation, and leukemia cell death. Whether vitamin C efficacy in combination with PARPi depends on the level of TET2 functional alleles is not yet known and may stratify whether TET2 wild-type or mutant patients should be targeted by vitamin C adjuvant therapy. We have generated primary murine AML-ETO9a+ and MLL-AF9+ leukemia models with Tet2 +/+, Tet2 +/- and Tet2 -/- alleles to determine the Tet2-dependent efficacy of PARPi treatment when combined with vitamin C. Furthermore, we have performed CRISPR gene knockout and drug library screening in human AML cell lines in combination with vitamin C treatment, and tested a panel of 10 AML cell lines with titrating concentrations of PARPi (Olaparib, Talazoparib, Veliparib and Rucaparib) alone or in combination with vitamin C (L-ascorbic acid) mimicking physiological to pharmacological in vivo doses. Primary murine AML cells and human cell lines were assayed for colony-forming capacity, differentiation, cell cycling, viability and effects on DNA methylation, levels of oxidized 5-mC and gene expression upon combination treatment in vitro and in vivo. TET2 mutant PDX and primary murine AMLs treated in vivo with L-ascorbate (4g/kg) and Olaparib (50mg/kg) by daily IP injection were also monitored for disease burden, cellular differentiation and survival. Vitamin C is known to drive the TET-catalyzed iterative oxidation of 5-methylcytosine (5-mC) leading to the formation of 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). We show that VitC-PARPi combination treatment causes an accumulation of oxidized 5-mC intermediates in the AML genome that correlates with increased yH2AX formation in mid-S phase and cell cycle stalling. Vitamin C reduces the IC 50 of Olaparib and Talazoparib by greater than 10-fold in human AML cells lines and primary murine leukemia cells, and treatment in combination promotes myeloid differentiation and blocks colony-forming capacity greater than either alone. In both our in vitro and in vivo studies, Tet2 +/- AML cells exhibit increased sensitivity to vitamin C treatment alone or in combination with PARPi compared to either Tet2 +/+ or Tet2 -/- cells, suggesting that patients with TET2 haploinsufficiency, which represents the majority of TET2 mutant cases, could benefit the most from combined treatment. Our findings confirm that vitamin C can act synergistically with PARPi to block AML cell viability, reduce colony-forming capacity, and decrease leukemia burden in PDX and primary murine leukemia models in a TET2 allelic dose-dependent manner. The combinatorial effect works at clinically relevant concentrations of PARPi, and low-pharmacological doses of vitamin C. These studies suggest that vitamin C can be used as a non-toxic therapeutic adjuvant to PARPi therapy for the treatment of AML. Disclosures Neel: Northern Biologics, LTD: Current equity holder in publicly-traded company, Other: Co- Founder; SAB: Other: Co-Founder; Navire Pharma: Consultancy, Current equity holder in publicly-traded company; Jengu Therapeutics: Consultancy, Current equity holder in publicly-traded company, Other: Co-Founder; Arvinas, Inc: Consultancy, Current equity holder in publicly-traded company; Recursion Pharma: Current equity holder in publicly-traded company.

2021 ◽  
Vol 1 ◽  
Mariam Maltseva ◽  
Marc-André Langlois

Analysis of viral particle heterogeneity produced from infected cells has been limited by the inefficiency of traditional analytical methods to characterize large populations of viruses at an individual particle level. Flow virometry (FVM) is an emerging technique based on flow cytometry principles that enables a high throughput, multiparametric, and phenotypic characterization of viruses at a single particle resolution. Here, we performed FVM to analyze surface markers found on Murine Leukemia Virus (MLV) and glycosylated Gag-deficient (glycoGag) MLV. The glycoGag viral accessory protein has several roles in the MLV viral infection cycle including directing retroviral assembly and particle release at lipid rafts. Based on previous studies, we hypothesize that glycoGag modulates host protein incorporation into the viral envelope during viral assembly and budding. Here, by using FVM, we reveal that glycoGag is associated with an increased incorporation of the host-derived tetraspanins CD81 and CD63 along with the lipid raft marker and immune antigen Thy1.2 during the assembly and release of viral particles from infected NIH 3T3, EL4, and primary CD4+ T cells. Moreover, we show differences in the uptake of host proteins by viruses that are released from the two cell lines and primary T lymphocytes. Additionally, at the individual viral particle level, we observed a degree of expression heterogeneity of host-derived antigens within the viral population. Finally, certain cellular antigens can show either enrichment or exclusion from the viral envelope depending on whether glycoGag is expressed by the virus. This suggests that glycoGag is involved in a mechanism of selective host protein incorporation into the viral envelope.

2021 ◽  
Vol 17 ◽  
pp. 2194-2202
Zhiwei Zhang ◽  
Tao Zhou ◽  
Taehui Yang ◽  
Keisuke Fukaya ◽  
Enjuro Harunari ◽  

Three new tetronate-class polyketides, nomimicins B, C, and D, along with nomimicin, hereafter named nomimicin A, were isolated from the culture extract of Actinomadura sp. AKA43 collected from floating particles in the deep-sea water of Sagami Bay, Japan. The structures of nomimicins B, C, and D were elucidated through the interpretation of NMR and MS analytical data, and the absolute configuration was determined by combination of NOESY/ROESY and ECD analyses. Nomimicins B, C, and D showed antimicrobial activity against Gram-positive bacteria, Kocuria rhizophila and Bacillus subtilis, with MIC values in the range of 6.5 to 12.5 μg/mL. Nomimicins B and C also displayed cytotoxicity against P388 murine leukemia cells with IC50 values of 33 and 89 μM, respectively.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Kelsey A Haugh ◽  
Mark S Ladinsky ◽  
Irfan Ullah ◽  
Helen M Stone ◽  
Ruoxi Pi ◽  

Early events in retrovirus transmission are determined by interactions between incoming viruses and frontline cells near entry sites. Despite their importance for retroviral pathogenesis, very little is known about these events. We developed a bioluminescence imaging (BLI)-guided multiscale imaging approach to study these events in vivo. Engineered murine leukemia reporter viruses allowed us to monitor individual stages of retrovirus life cycle including virus particle flow, virus entry into cells, infection and spread for retroorbital, subcutaneous and oral routes. BLI permitted temporal tracking of orally administered retroviruses along the gastrointestinal tract as they traversed the lumen through Peyer's Patches to reach the draining mesenteric sac. Importantly, capture and acquisition of lymph-, blood- and milk-borne retroviruses spanning three routes, was promoted by a common host factor, the I-type lectin CD169, expressed on sentinel macrophages. These results highlight how retroviruses co-opt the immune surveillance function of tissue resident sentinel macrophages for establishing infection.

2021 ◽  
Vol 89 (2) ◽  
pp. 21
Kartini Hasballah ◽  
Murniana Sarong ◽  
Renzavaldy Rusly ◽  
Herdina Fitria ◽  
Dewi Rara Maida ◽  

Calotropis gigantea has been known to produce bioactive secondary metabolites with antiproliferative activities against cancer cells. Herein, we extracted the secondary metabolites using ethyl acetate from its root bark and further tested its antiproliferative activities against P388 murine leukemia cell lines. The subfractions from the ethyl acetate extract was obtained from Vacuum Liquid Column Chromatography (VLCC), and followed by Gravity Column Chromatography (GCC). The subfraction C2 and D1 were identified to contain triterpenoids and steroids with the most potent cytotoxicity against Brine Shrimp Lethality Test (BSLT). A 3-(4,5-dimethylthiazol-2-yl) -2-5 diphenyl tetrazolium bromide (MTT) assay suggested that ethyl acetate extract has the highest antiproliferative activities against P388 murine leukemia cell lines (IC50 = 21.79 μg/mL), as opposed to subfraction C2 (IC50 = 50.64 µg/mL) and subfraction D1 (IC50 = 49.33 µg/mL). The compound identified in subfraction C2 and D1 are taraxerol acetate and calotropone, respectively. Though taraxerol acetate and calotropone were active in inhibiting the leukemic cell lines, their IC50s were lower than the ethyl acetate extract, which is probably due to the synergism of the secondary metabolites.

2021 ◽  
Gary Z. Wang ◽  
Stephen P. Goff

During retrovirus infection, a histone-free DNA copy of the viral RNA genome is synthesized and rapidly loaded with nucleosomes de novo upon nuclear entry. The potential role of viral accessory proteins in histone loading onto retroviral DNAs has not been extensively investigated. The p12 protein of Moloney murine leukemia virus (MMLV) is a virion protein critical for tethering the incoming viral DNA to host chromatin in the early stages of infection. Infection by virions containing a mutant p12 (PM14) defective in chromatin tethering results in the formation of viral DNAs that do not accumulate in the nucleus. In this report, we show that viral DNAs of these mutants are not loaded with histones. Moreover, the DNA genomes delivered by mutant p12 show prolonged association with viral structural proteins nucleocapsid (NC) and capsid (CA). The histone-poor viral DNA genomes do not become associated with the host RNA polymerase II machinery. These findings provide insights into fundamental aspects of retroviral biology, indicating that tethering to host chromatin by p12 and retention in the nucleus are required to allow loading of histones onto the viral DNA. Importance: Incoming retroviral DNAs are rapidly loaded with nucleosomal histones upon entry into the nucleus and before integration into the host genome. The entry of murine leukemia virus DNA into the nucleus only occurs upon dissolution of the nuclear membrane in mitosis, and retention in the nucleus requires the action of a viral protein, p12, which tethers the DNA to host chromatin. Data presented here show that the tethering activity of p12 is required for the loading of histones onto the viral DNA. p12 mutants lacking tethering activity fail to acquire histones, retain capsid and nucleocapsid proteins, and are poorly transcribed. The work defines a new requirement for a viral protein to allow chromatinization of viral DNA.

2021 ◽  
Gianfranco Pietrantoni ◽  
Aracelly Gaete-Argel ◽  
Diego Herrera-Rojo ◽  
Rodrigo Ibarra-Karmy ◽  
Fernando J Bustos ◽  

Murine leukemia virus (MLV) requires the infected cell to divide to access the nucleus to integrate into the host genome. It has been determined that MLV uses the microtubule and actin network to reach the nucleus at the early stages of infection. Several studies have shown that viruses use the dynein motor protein associated with microtubules for their displacement. We have previously reported that Dynein light chain roadblock-type2 (Dynlrb2) knock-down significantly decreases MLV infection compared to non-silenced cells, suggesting a functional association between this dynein light chain and MLV preintegration complex (PIC). Here we aim to determine if the dynein complex Dynlrb2 subunit plays an essential role in the retrograde transport of MLV. For this, an MLV mutant containing the green fluorescent protein (GFP) fused to the viral protein p12 was used to assay the PIC localization and speed in cells were the expression of Dynlrb2 was modulated. We found a significant decrease in the arrival of MLV PIC to the nucleus and a reduced net speed of MLV PICs when Dynlrb2 was knocked down. On the contrary, an increase in nuclear localization is observed when Dynlrb2 is overexpressed. Our results suggest that Dynlrb2 plays an essential role in MLV retrograde transport. Importance Different viruses use different components of cytoplasmic dynein complex to traffic to their replication site. We have found that murine leukemia virus (MLV) depends on dynein light chain Dynlrb2 for infection, retrograde traffic and nuclear entry. Our study provides new information regarding the molecular requirements for retrograde transport of MLV preintegration complex and demonstrates the essential role of Dynlrb2 in MLV infection.

Sign in / Sign up

Export Citation Format

Share Document