debris flow susceptibility
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 3)

CATENA ◽  
2022 ◽  
Vol 210 ◽  
pp. 105929
Author(s):  
Pasquale Marino ◽  
Srikrishnan Siva Subramanian ◽  
Xuanmei Fan ◽  
Roberto Greco

2021 ◽  
Author(s):  
Laurie Jayne Kurilla ◽  
Giandomenico Fubelli

Abstract Debris flows, and landslides in general, are worldwide catastrophic phenomena. As world population and urbanization grow in magnitude and geographic coverage, the need exists to extend focus, research, and modeling to a continental and global scale.Although debris flow behavior and parameters are local phenomena, sound generalizations can be applied to debris flow susceptibility analyses at larger geographic extents based on these criteria. The focus of this research is to develop a global debris flow susceptibility map by modeling at both a continental scale for all continents and by a single global model and determine whether a global model adequately represents each continent. Probability Density, Conditional Probability, Certainty Factor, Frequency Ratio, and Maximum Entropy statistical models were developed and evaluated for best model performance using fourteen environmental factors generally accepted as the most appropriate debris flow predisposing factors. Global models and models for each continent were then developed and evaluated against verification data. The comparative analysis demonstrates that a single global model performs comparably or better than individual continental models for a majority of the continents, resulting in a debris flow susceptibility map of the world useful in international planning, and future debris flow susceptibility modeling for determining societal impacts.


2021 ◽  
Author(s):  
Laurie Jayne Kurilla ◽  
Giandomenico Fubelli

Abstract. In a study of debris flow susceptibility on the European continent, an analysis of the impact between known location and a location accuracy offset for 99 debris flows, demonstrates the impact of uncertainty in defining appropriate predisposing factors, and consequent analysis for areas of susceptibility. The dominant predisposing environmental factors, as determined through Maximum Entropy modeling, are presented, and analyzed with respect to the values found at debris flow event points versus a buffered distance of locational uncertainty around each point. Five Maximum Entropy susceptibility models are developed utilizing the original debris flow inventory of points, randomly generated points, and two models utilizing a subset of points with an uncertainty of 5 km, 1 km, and a model utilizing only points with a known location of “exact”. The AUCs are 0.891, 0.893, 0.896, 0.921, and 0.93, respectively. The “exact” model, with the highest AUC, is ignored in final analyses due to the small number of points, and localized distribution, and hence susceptibility results likely non-representational of the continent. Each model is analyzed with respect to the AUC, highest contributing factors, factor classes, susceptibility impact, and comparisons of the susceptibility distributions and susceptibility value differences. Based on model comparisons, geographic extent and context of this study, the models utilizing points with a location uncertainty of less than or equal to 5 km best represent debris flow susceptibility of the continent of Europe. A novel representation of the uncertainty is expressed, and included in a final susceptibility map, as an overlay of standard deviation and mean of susceptibility values for the two best models, providing additional insight for subsequent action.


Author(s):  
Sabrina Bonetto ◽  
Pietro Mosca ◽  
Federico Vagnon ◽  
Davide Vianello

AbstractThis research describes a quantitative, rapid, and low-cost methodology for debris flow susceptibility evaluation at the basin scale using open-access data and geodatabases. The proposed approach can aid decision makers in land management and territorial planning, by first screening for areas with a higher debris flow susceptibility. Five environmental predisposing factors, namely, bedrock lithology, fracture network, quaternary deposits, slope inclination, and hydrographic network, were selected as independent parameters and their mutual interactions were described and quantified using the Rock Engineering System (RES) methodology. For each parameter, specific indexes were proposed, aiming to provide a final synthetic and representative index of debris flow susceptibility at the basin scale. The methodology was tested in four basins located in the Upper Susa Valley (NW Italian Alps) where debris flow events are the predominant natural hazard. The proposed matrix can represent a useful standardized tool, universally applicable, since it is independent of type and characteristic of the basin.


2021 ◽  
Vol 7 (6) ◽  
pp. 953-973
Author(s):  
Qaiser Mehmood ◽  
Wang Qing ◽  
Jianping Chen ◽  
Jianhua Yan ◽  
Muhammad Ammar ◽  
...  

Debris flow mainly happens in mountainous areas all around the world with deadly social and economic impacts. With the speedy development of the mountainous economy, the debris flow susceptibility evaluation in the mountainous areas is of crucial importance for the safety of mountainous life and economy. Yunnan province of China is one of the worst hitting areas by debris flow in the world. In this paper, debris flow susceptibility assessment of Datong and Taicun gully near the first bend of Jinsha River has been done with the help of site investigation and GIS and remote sensing techniques. Eight causative factors, including slope, topographic wetness index, sediments transport index, ground roughness, basin area, bending coefficient, source material, and normalised difference vegetation index, have been selected for debris flow susceptibility evaluation. Analytical hierarchy process combined with Extension method has been used to calculate the susceptibility level of Datong and Taicun gullies. The evaluation result shows that both the gullies have a moderate susceptibility to debris flow. The result suggests that all the ongoing engineering projects such as mining and road construction work should be done with all precautionary measures, and the excavated material should adequately store in the gullies. Doi: 10.28991/cej-2021-03091702 Full Text: PDF


2021 ◽  
Vol 18 (5) ◽  
pp. 1177-1191
Author(s):  
Shuang-shuang Qiao ◽  
Sheng-wu Qin ◽  
Jing-bo Sun ◽  
Wen-chao Che ◽  
Jing-yu Yao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document