amino acid signaling
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 119 (3) ◽  
pp. e2110917119
Author(s):  
Zongyan Yu ◽  
Zhiwen Yang ◽  
Guoru Ren ◽  
Yingjie Wang ◽  
Xiang Luo ◽  
...  

Amino acids are essential for cell growth and metabolism. Amino acid and growth factor signaling pathways coordinately regulate the mechanistic target of rapamycin complex 1 (mTORC1) kinase in cell growth and organ development. While major components of amino acid signaling mechanisms have been identified, their biological functions in organ development are unclear. We aimed to understand the functions of the critically positioned amino acid signaling complex GAP activity towards Rags 2 (GATOR2) in brain development. GATOR2 mediates amino acid signaling to mTORC1 by directly linking the amino acid sensors for arginine and leucine to downstream signaling complexes. Now, we report a role of GATOR2 in oligodendrocyte myelination in postnatal brain development. We show that the disruption of GATOR2 complex by genetic deletion of meiosis regulator for oocyte development (Mios, encoding a component of GATOR2) selectively impairs the formation of myelinating oligodendrocytes, thus brain myelination, without apparent effects on the formation of neurons and astrocytes. The loss of Mios impairs cell cycle progression of oligodendrocyte precursor cells, leading to their reduced proliferation and differentiation. Mios deletion manifests a cell type–dependent effect on mTORC1 in the brain, with oligodendroglial mTORC1 selectively affected. However, the role of Mios/GATOR2 in oligodendrocyte formation and myelination involves mTORC1-independent function. This study suggests that GATOR2 coordinates amino acid and growth factor signaling to regulate oligodendrocyte myelination.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xu Zheng ◽  
Huimin Su ◽  
Liping Wang ◽  
Ruiyuan Yao ◽  
Yuze Ma ◽  
...  

In addition to serving as the building blocks for protein synthesis, amino acids serve as critical signaling molecules in cells. However, the mechanism through which amino acid signals are sensed in cells is not yet fully understood. This study examined differences in the phosphorylation levels of proteins in response to amino acid signals in Cashmere goat fetal fibroblasts (GFb). Amino acid deficiency was found to induce autophagy and attenuate mammalian/mechanistic target of rapamycin complex (mTORC1)/Unc-51-like autophagy activating kinase 1 (ULK1) signaling in GFb cells. A total of 144 phosphosites on 102 proteins positively associated with amino acid signaling were screened using phosphorylation-based proteomics analysis. The mitogen-activated protein kinase (MAPK) signaling pathway was found to play a potentially important role in the interaction network involved in the response to amino acid signals, according to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and MAPK1/3 may serve as a central hub for the entire network. Motif analysis identified three master motifs, xxx_S_Pxx, xxx_S_xxE, and xxx_S_xDx, which were centered on those phosphosites at which phosphorylation was positively regulated by amino acid signaling. Additionally, the phosphorylation levels of three membrane proteins, the zinc transporter SLC39A7, the sodium-dependent neutral amino acid transporters SLC1A5 and SLC38A7, and three translation initiation factors, eukaryotic initiation factor (eIF)5B, eIF4G, and eIF3C, were positively regulated by amino acid signals. These pivotal proteins were added to currently known signaling pathways to generate a novel model of the network pathways associated with amino acid signals. Finally, the phosphorylation levels of threonine 203 and tyrosine 205 on MAPK3 in response to amino acid signals were examined by western blot analysis, and the results were consistent with the data from the phosphoproteomics analysis. The findings of this study provide new evidence and insights into the precise mechanism through which amino acid signals are sensed and conducted in Cashmere goat fetal fibroblasts.


iScience ◽  
2021 ◽  
pp. 102778
Author(s):  
Sara Fukushima ◽  
Hiroki Nishi ◽  
Mikako Kumano ◽  
Daisuke Yamanaka ◽  
Naoyuki Kataoka ◽  
...  

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 127-128
Author(s):  
Teresa A Davis ◽  
Samer El-Kadi ◽  
Agus Suryawan ◽  
Marta Fiorotto

Abstract Objectives: Meal feeding enhances skeletal muscle protein synthesis and lean growth more than continuous feeding in piglets. This enhanced muscle protein synthesis with meal feeding is associated with increased activation of mTORC1-dependent translation initiation. The mechanism underlying this response is unknown. We aimed to identify insulin and amino acid signaling components involved in the enhanced lean growth that results from meal feeding vs. continuous feeding in term-born pigs. Methods: Newborn piglets were fed for 21 d an equal amount of sow milk replacer (12.8 g protein and 155 kcal/(kg BW.d)) by gastrostomy tube either as intermittent bolus meals every 4 h (MEAL) or by continuous infusion (CON). After 21 d, gastrocnemius muscle was collected from CON, and before (MEAL-0) or 60 min after a meal (MEAL-60). Components of the insulin and amino acid signaling pathways up- and downstream of mTORC1 that regulate protein translation were measured. Results: Phosphorylation of AKT and TCS2 was greater in MEAL-60 than in MEAL-0 and CON (P < 0.05). The association of Sestrin2 with GATOR2 was similar in CON and MEAL-0 but was lower in MEAL-60 (P < 0.05). The abundances of RagA-mTOR, RagC-mTOR, and Rheb-mTOR, but not CASTOR1-GATOR2, complexes were higher in MEAL-60 than in CON and MEAL-0 (P < 0.05). The phosphorylation of S6K1 and 4EBP1 was higher in MEAL-60 than CON and MEAL-0 (P < 0.05). The abundances of Sestrin2, GATOR2, CASTOR1, RagA, RagC, and Rheb and the phosphorylation of eIF2alpha, eEF2, ERK1/2 and AMPK were unaffected by treatments. Conclusions: Our results demonstrate that the enhanced rate of skeletal muscle protein synthesis and lean growth with meal feeding compared with continuous feeding are due to the enhanced activation of both insulin and amino acid signaling pathways that result in the greater stimulation of translation initiation. Support: NIH HD085573, USDA CRIS 6250-51000-055, NIH HD072891, USDA NIFA 2013-67015-20438.


2019 ◽  
Vol 218 (9) ◽  
pp. 3019-3038 ◽  
Author(s):  
Arunas Kvainickas ◽  
Heike Nägele ◽  
Wenjing Qi ◽  
Ladislav Dokládal ◽  
Ana Jimenez-Orgaz ◽  
...  

Retromer is an evolutionarily conserved multiprotein complex that orchestrates the endocytic recycling of integral membrane proteins. Here, we demonstrate that retromer is also required to maintain lysosomal amino acid signaling through mTORC1 across species. Without retromer, amino acids no longer stimulate mTORC1 translocation to the lysosomal membrane, which leads to a loss of mTORC1 activity and increased induction of autophagy. Mechanistically, we show that its effect on mTORC1 activity is not linked to retromer’s role in the recycling of transmembrane proteins. Instead, retromer cooperates with the RAB7-GAP TBC1D5 to restrict late endosomal RAB7 into microdomains that are spatially separated from the amino acid–sensing domains. Upon loss of retromer, RAB7 expands into the ragulator-decorated amino acid–sensing domains and interferes with RAG-GTPase and mTORC1 recruitment. Depletion of retromer in Caenorhabditis elegans reduces mTORC1 signaling and extends the lifespan of the worms, confirming an evolutionarily conserved and unexpected role for retromer in the regulation of mTORC1 activity and longevity.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1269
Author(s):  
Ji Su Lee ◽  
Yeong A. Kim ◽  
Young Jin Jang ◽  
Yongtaek Oh ◽  
Sanguine Byun

Chili peppers are one of the most widely consumed spices worldwide. However, research on the health benefits of chili peppers and some of its constituents has raised controversy as to whether chili pepper compounds possess cancer-promoting or cancer-preventive effects. While ample studies have been carried out to examine the effect of capsaicin in carcinogenesis, the chemopreventive effect of other major components in chili pepper, including dihydrocapsaicin, capsiate, and capsanthin, is relatively unclear. Herein, we investigated the inhibitory effect of chili pepper components on malignant cell transformation. Among the tested chili pepper compounds, dihydrocapsaicin displayed the strongest inhibitory activity against epidermal growth factor (EGF)-induced neoplastic transformation. Dihydrocapsaicin specifically suppressed EGF-induced phosphorylations of the p70S6K1-S6 pathway and the expression of c-Fos. A reduction in c-Fos levels by dihydrocapsaicin led to a concomitant downregulation of AP-1 activation. Further analysis of the molecular mechanism responsible for the dihydrocapsaicin-mediated decrease in phospho-p70S6K1, revealed that dihydrocapsaicin can block amino acid-dependent mechanistic targets of rapamycin complex 1 (mTORC1)-p70S6K1-S6 signal activation. Additionally, dihydrocapsaicin was able to selectively augment amino acid deprivation-induced cell death in mTORC1-hyperactive cells. Collectively, dihydrocapsaicin exerted chemopreventive effects through inhibiting amino acid signaling and c-Fos pathways and, thus, might be a promising cancer preventive natural agent.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Agus Suryawan ◽  
Samer El-Kadi ◽  
Hanh Nguyen ◽  
Marta Fiorotto ◽  
Teresa Davis

Abstract Objectives Our recent study in a piglet model of the human neonate born at full term showed that intermittent bolus feeding promotes greater rates of protein synthesis in skeletal muscle than continuous feeding, leading to an increase in lean growth. This enhanced rate of muscle protein synthesis with intermittent bolus feeding is associated with an increased activation of mTORC1-dependent translation initiation. However, the mechanism underlying this response is unknown. In this study, we aimed to identify the insulin and/or amino acid signaling components involved in the enhanced stimulation of lean growth by intermittent bolus compared to continuous feeding in term-born pigs. Methods Term piglets (2–3 d old) were fed for 21 d an equal amount (240 ml/kg body weight [BW]/d) of sow milk replacer containing 12.8 g protein and 175 kcal/kg BW/d. Feedings were administered by gastrostomy tube either as intermittent bolus meals every 4 h (INT) or by continuous infusion (CON). After 21 d, gastrocnemius muscle was collected from CON, INT-0 (before a meal) and INT-60 (60 min after a meal) groups. Upstream and downstream insulin and amino acid signaling components of relevance to mTORC1 activation and protein translation were measured. Results Phosphorylation of AKT and TCS2 was greater in INT-60 than in INT-0 and CON groups (P < 0.05). There was no significant difference between CON and INT groups in the phosphorylation of ERK 1/2 and AMPK. The association of Sestrin2, a leucine sensor, with GATOR2 was similar in CON and INT-0 but was lower in INT-60 (P < 0.05). The abundances of RagA-mTOR, RagC-mTOR, and Rheb-mTOR complexes were higher in INT-60 than in CON and INT-0 (P < 0.05). The phosphorylation of S6K1 and 4EBP1 was higher in INT-60 than CON and INT-0 groups (P < 0.05). Phosphorylation of eIF2alpha and eEF2 were not affected by treatments. Conclusions Our results demonstrate that, following a full-term birth, the enhanced rate of skeletal muscle protein synthesis and lean growth with intermittent bolus compared to continuous feeding is at least in part due to the enhanced activation of both insulin and amino acid signaling pathways leading to greater stimulation of translation initiation. Funding Sources NIH HD085573, USDA CRIS 6250-51000-055, NIH HD072891, USDA NIFA 2013-67015-20438.


Sign in / Sign up

Export Citation Format

Share Document