scattering measurements
Recently Published Documents


TOTAL DOCUMENTS

2039
(FIVE YEARS 160)

H-INDEX

69
(FIVE YEARS 5)

2022 ◽  
Vol 149 ◽  
pp. 106799
Author(s):  
Wei Guo ◽  
Nan Zeng ◽  
Riwei Liao ◽  
Qizhi Xu ◽  
Jun Guo ◽  
...  

Author(s):  
Aaron Michael Hansen ◽  
Khanh Linh Nguyen ◽  
David Turnbull ◽  
Brian J Albright ◽  
Russell K. Follett ◽  
...  

Abstract Cross-beam energy transfer (CBET) was measured in two regimes where the energy transfer saturation mechanism was determined by the plasma and laser beam conditions. Linear kinetic CBET theory agreed well with the measured energy transfer in all experiment configurations and at all probe beam intensities when accounting for pump depletion and the plasma conditions measured using Thomson-scattering. Simultaneous CBET and Thomson-scattering measurements enabled uncertainties in the plasma conditions to be isolated from CBET theory, which allowed the saturation mechanisms to be identified. In the perpendicular-beam configuration the saturation mode was through ion heating, which resulted from ion trapping in the driven waves and subsequent ion-ion collisional heating. In the co-propagating beam configuration there was minimal ion heating and the saturation mode was through pump depletion.


2021 ◽  
Vol 7 (1) ◽  
pp. 2
Author(s):  
Kenichi Kato ◽  
Kazuya Shigeta

The total scattering method, which is based on measurements of both Bragg and diffuse scattering on an equal basis, has been still challenging even by means of synchrotron X-rays. This is because such measurements require a wide coverage in scattering vector Q, high Q resolution, and a wide dynamic range for X-ray detectors. There is a trade-off relationship between the coverage and resolution in Q, whereas the dynamic range is defined by differences in X-ray response between detector channels (X-ray response non-uniformity: XRNU). XRNU is one of the systematic errors for individual channels, while it appears to be a random error for different channels. In the present study, taking advantage of the randomness, the true sensitivity for each channel has been statistically estimated. Results indicate that the dynamic range of microstrip modules (MYTHEN, Dectris, Baden-Daettwil, Switzerland), which have been assembled for a total scattering measurement system (OHGI), has been successfully restored from 104 to 106. Furthermore, the correction algorithm has been optimized to increase time efficiencies. As a result, the correcting time has been reduced from half a day to half an hour, which enables on-demand correction for XRNU according to experimental settings. High-precision X-ray total scattering measurements, which has been achieved by a high-accuracy detector system, have demonstrated valence density studies from powder and PDF studies for atomic displacement parameters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261574
Author(s):  
J. Song ◽  
J. Won ◽  
W. Bang

We present a time-resolved analysis of Rayleigh scattering measurements to determine the average size of methane clusters and find the optimum timing for laser-cluster fusion experiments. We measure Rayleigh scattering and determine the average size of methane clusters varying the backing pressure (P0) from 11 bar to 69 bar. Regarding the onset of clustering, we estimate that the average size of methane clusters at the onset of clustering is Nc0≅20 at 11 bar. According to our measurements, the average cluster radius r follows the power law of r∝P01.86. Our ion time-of-flight measurements indicate that we have produced energetic deuterium ions with kT = 52±2 keV after laser-cluster interaction using CD4 gas at 50 bar. We find that this ion temperature agrees with the predicted temperature from CD4 clusters at 50 bar with r = 14 nm assuming the Coulomb explosion model.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Joseph A. M. Paddison ◽  
Georg Ehlers ◽  
Andrew B. Cairns ◽  
Jason S. Gardner ◽  
Oleg A. Petrenko ◽  
...  

AbstractIn partially ordered magnets, order and disorder coexist in the same magnetic phase, distinct from both spin liquids and spin solids. Here, we determine the nature of partial magnetic ordering in the canonical frustrated antiferromagnet Gd2Ti2O7, in which Gd3+ spins occupy a pyrochlore lattice. Using single-crystal neutron-diffraction measurements in applied magnetic field, magnetic symmetry analysis, inelastic neutron-scattering measurements, and spin-wave modeling, we show that its low-temperature magnetic structure involves two propagation vectors (2-k structure) with suppressed ordered magnetic moments and enhanced spin-wave fluctuations. Our experimental results are consistent with theoretical predictions of thermal fluctuation-driven order in Gd2Ti2O7, and reveal that inelastic neutron-scattering measurements on powder samples can solve the longstanding problem of distinguishing single-k and multi-k magnetic structures.


Sign in / Sign up

Export Citation Format

Share Document