external rotator
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 38)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Kazuyoshi Baba ◽  
Daisuke Chiba ◽  
Yu Mori ◽  
Yoshiyuki Kuwahara ◽  
Atsushi Kogure ◽  
...  

Abstract Background This study examined the biomechanics of preventing excessive internal hip joint rotation related to the hip flexion angle. Method An intramedullary nail with a circular plate equipped with a protractor was installed in the femur of nine normal hips. The circular plate was pulled by 3.15 Nm of force in the internal rotation direction. The external rotators were individually resected, finally cutting the ischiofemoral ligament. The cutting order of the external rotators differed on each side to individually determine the internal rotation resistance. The external rotators were resected from the piriformis to the obturator externus in the right hips and the reverse order in the left hips. Traction was performed after excising each muscle and ischiofemoral ligament. Measurements were taken at 0°, 30°, and 60° of hip flexion, and the differences from baseline were calculated. Results For the right hip measurements, the piriformis and ischiofemoral ligament resection significantly differed at 0° of flexion (p = 0.02), each external rotator and the ischiofemoral ligament resections significantly differed at 30° of flexion (p < 0.01), and the ischiofemoral ligament and piriformis and inferior gemellus resections significantly differed at 60° of flexion (p = 0.04 and p = 0.02, respectively). In the left hips, the ischiofemoral ligament and obturator externus, inferior gemellus, and obturator internus resections significantly differed at 0° of flexion (p < 0.01, p < 0.01, and p = 0.01, respectively), as did each external rotator and the ischiofemoral ligament resections at 30° of flexion (p < 0.01). Conclusion The ischiofemoral ligament primarily restricted the internal rotation of the hip joint. The piriformis and obturator internus may restrict internal rotation at 0° and 60° of flexion.


2022 ◽  
Vol 9 ◽  
Author(s):  
Yizhuo Yang ◽  
Shuai Liu ◽  
Mengyu Ling ◽  
Chaoqun Ye

Objectives: Low back pain (LBP) has negative implications for the military's combat effectiveness. This study was conducted to determine the prevalence and risk factors of LBP among pilots through a questionnaire and physical function assessments.Methods: Data on the demographic and occupational characteristics, health habits, physical activity, and musculoskeletal injuries of 217 male pilots (114 fighter, 48 helicopter, and 55 transport pilots) were collected using a self-reported questionnaire and physical function assessments.Results: LBP prevalence was 37.8% in the total cohort and 36.0, 45.8, and 34.5% among fighter, helicopter, and transport pilots, respectively. Multivariate regression analysis revealed that the risk factors significantly associated with LBP were neck pain [odds ratio (OR): 3.559, 95% confidence interval (CI): 1.827–6.934], transversus abdominis activation (OR: 0.346, 95% CI: 0.172–0.698), and hip external rotator strength (OR: 0.001, 95% CI: 0.000–0.563) in the total cohort; neck pain (OR: 3.586, 95% CI: 1.365–9.418), transversus abdominis activation (OR: 0.268, 95% CI: 0.094–0.765), hip external rotator strength (OR: 0.000, 95% CI: 0.000–0.949), and weekly flying hours (OR: 3.889, 95% CI: 1.490–10.149) in fighter pilots; irregular strength training (OR: 0.036, 95% CI: 0.003–0.507) and hip external rotator strength (OR: 0.000, 95% CI: 0.000–0.042) in helicopter pilots; and neck pain (OR: 6.417, 95% CI: 1.424–28.909) in transport pilots.Conclusions: High volume flight schedules and weak core muscle functions have significant negative effects on pilots' back health. LBP is commonly associated with high weekly flying hours, worsening neck pain, transversus abdominis insufficient activation, and reduced hip extensor/rotator strength. Risk factors vary among pilots of different aircraft. Thus, specific core muscle training would be especially important for military pilots.


2021 ◽  
pp. 036354652110290
Author(s):  
Philip Malloy ◽  
Daniel M. Wichman ◽  
Flavio Garcia ◽  
Alejandro Espinoza-Orías ◽  
Jorge Chahla ◽  
...  

Background: Impairments in squat depth have been reported in patients with femoroacetabular impingement syndrome (FAIS). However, little is known about single-leg squat (SLS) performance in these patients, despite this task being commonly used in the rehabilitation and training settings. Purpose/Hypothesis: The aims of this study were (1) to investigate whether patients with FAIS demonstrate differences in SLS performance compared with healthy controls and (2) to determine whether dynamic range of motion (ROM), muscle strength, hip morphologic measures, hip pain, and hip-specific function predict SLS performance in patients with FAIS. We hypothesized that patients with FAIS would demonstrate impaired SLS performance and that impaired hip biomechanics, muscle strength, and hip-specific function would predict squat performance in patients with FAIS. Study Design: Controlled laboratory study. Methods: Three-dimensional (3D) kinematic data were collected at 100 Hz using a 20-camera 3D motion capture system during 3 SLS trials in 34 patients with FAIS and 26 healthy controls. Isometric muscle strength was tested with a stationary handheld dynamometer in all participants. Squat performance was quantified by squat depth (in meters), and the biomechanical variables of dynamic ROM of the pelvis, the hip, the knee, and the ankle in all planes were calculated. In patients with FAIS, femoral and acetabular morphology were measured using radiographic alpha angles and lateral center-edge angles. Hip pain and hip-specific function were measured using the visual analog scale for pain and the Hip Outcome Score Activities of Daily Living subscale, respectively. Two-tailed independent-samples t tests were used to determine between-group differences for squat depth, dynamic ROM variables, and muscle strength. A hierarchical multiple linear regression (MLR) model was used to determine whether biomechanical variables, muscle strength, hip morphology measures, hip pain, and hip-specific function were predictors of squat depth. All statistical analyses were performed using SPSS Version 26. Results: There were no between-group differences in age (FAIS, 30.0 ± 7.0 years vs controls, 27.3 ± 7.0 years; P = .18) or body mass index (FAIS, 23.1 ± 2.8 vs controls, 22.6 ± 3.2; P = .51). Squat depth was less in patients with FAIS compared with healthy controls (FAIS, 0.24 ± 0.4 m vs controls, 0.29 ± 0.05 m; P < .001). In the sagittal plane, patients with FAIS demonstrated less dynamic ROM of the hip (FAIS, 67.8°± 12.4° vs controls, 79.2°± 12.5°; P = .001) and the knee (FAIS, 71.9°± 9.4° vs controls, 78.9°± 13.2°; P = .02) compared with controls. Patients with FAIS also demonstrated a less dynamic coronal plane pelvis ROM (FAIS, 11.3°± 5.0° vs controls, 14.4°± 6.7°; P = .044). Patients with FAIS had reduced hip muscle strength of the hip external rotator (FAIS, 1 ± 0.3 N/kg vs controls, 1.2 ± 0.3 N/kg; P = .034), hip internal rotator (FAIS, 0.8 ± 0.3 N/kg vs controls 1 ± 0.3 N/kg; P = .03), and hip flexor (FAIS, 4 ± 1.1 N/kg vs controls, 4.8 ± 1.2 N/kg; P = .013) muscle groups. The hierarchical MLR revealed that the dynamic ROM of the hip, the knee, and the pelvis, the hip external rotation muscle strength, and the femoral alpha angles were all significant predictors of squat performance, and the final MLR model explained 92.4% of the total variance in squat depth in patients with FAIS. Conclusion: Patients with FAIS demonstrate impaired SLS squat performance compared with healthy controls. This impaired squat performance is predominantly predicted by sagittal plane knee and hip biomechanics and hip external rotator strength, and less by frontal plane pelvic ROM and hip morphology in patients with FAIS. Clinical Relevance: Clinicians should focus treatment on improving dynamic ROM and hip external rotator muscle strength to improve squat performance; however, femoral morphology should also be considered in the treatment paradigm.


Author(s):  
Ali Mohammed Alzahrani ◽  
Msaad Alzhrani ◽  
Saeed Nasser Alshahrani ◽  
Wael Alghamdi ◽  
Mazen Alqahtani ◽  
...  

This study aimed to systematically review research investigating the association between hip muscle strength and dynamic knee valgus (DKV). Four databases (MEDLINE, PubMed, CINAHL, and SPORTDiscus) were searched for journal articles published from inception to October 2020. Seven studies investigating the association between hip muscle strength and DKV using a two-dimensional motion analysis system in healthy adults were included. The relationship between hip abductor muscle strength and DKV was negatively correlated in two studies, positively correlated in two studies, and not correlated in three studies. The DKV was associated with reduced hip extensor muscle strength in two studies and reduced hip external rotator muscle strength in two studies, while no correlation was found in three and five studies for each muscle group, respectively. The relationship between hip muscle strength, including abductors, extensors, and external rotators and DKV is conflicting. Considering the current literature limitations and variable methodological approaches used among studies, the clinical relevance of such findings should be interpreted cautiously. Therefore, future studies are recommended to measure the eccentric strength of hip muscles, resembling muscular movement during landing. Furthermore, high-demand and sufficiently challenging functional tasks revealing lower limb kinematic differences, such as cutting and jumping tasks, are recommended for measuring the DKV.


Author(s):  
Mostafa Zarei ◽  
Saeed Eshghi ◽  
Mahdi Hosseinzadeh

Abstract Background The “FIFA 11 + Shoulder” programme has been reported to reduce the incidence of upper extremity injuries among soccer goalkeepers. It has also been recommended for overhead sports. The purpose of this study was therefore to investigate the effect of an 8-week “FIFA 11 + shoulder” (11 + S) programme on shoulder joint position sense (JPS), threshold to detect passive motion (TTDPM) and upper quarter Y Balance Test in young male volleyball players. Methods Thirty-two healthy young elite male volleyball players (17.49 ± 1.47 years) participated in this quasi-experimental study. Participants, recruited from two clubs participating in Iranian premier league, were randomly assigned into two groups; (1) the intervention group who performed the “FIFA 11 + shoulder” programme as their warm up protocol, three times per week, and (2) the control group who kept their routine warm up protocol meanwhile. Proprioception tests including JPS and TTDPM of internal and external rotator muscles of the dominant shoulder were recorded via the isokinetic system pro 4. The upper quarter Y Balance Test determined the shoulder dynamic stability. Results No statistically significant differences were observed for JPS and TTDPM of shoulder internal and external rotator muscles; shoulder stability however significantly increased only in the intervention group (p = 0.03, ηp2=0.02). Conclusion Upper quarter dynamic stability improvement due to the 11+S programme leads to volleyball players’ performance and may therefore contribute to a reduction in risk of sustaining injury if applied long-term. Trial registration The trial was retrospectively registered atIranian Registry of Clinical Trials with the number of IRCT20201030049193N1 at 04/12/2020.


Sign in / Sign up

Export Citation Format

Share Document