coupling error
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 19)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 355 ◽  
pp. 02012
Author(s):  
Zhanghui Wang ◽  
Fei Qi ◽  
Anping Qiu ◽  
Qin Shi

The dual-mass Silicon micro-machined gyroscope was processed by micro-fabrication technology. It could lead to quadrature coupling error and influence the output of the silicon micro-gyroscope. We select two commonly used gyroscope structures and analyze their quadrature coupling coefficient. Firstly, the complete dynamic model is proposed for the DMSG and the theoretical models of sensitivity and orthogonal signals are given by the dynamic model. Second, the influence of support structure on sensitivity and orthogonal signals are analyzed. The sensitivity and orthogonal signal of the two types of DMSG are derived and compared. The results show that the theoretical accuracy of the sensitivity and orthogonal signals can be improved about 50% and 30% after considering the support structure. The type-B gyroscope are insensitive to the Coriolis force (≈13% reduction) when compared to Type-A gyroscope. On the other hand the type-B gyroscope are insensitive to coupling stiffness (≈85% reduction) when compared to Type-A gyroscope. At last, the reliability of the theory is verified by simulations and experiments.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 272
Author(s):  
Jacek Marcinkiewicz ◽  
Mikołaj Spadło ◽  
Zaneta Staszak ◽  
Jarosław Selech

The article lays out the methodology for shaping the design features of a strain gauge transducer, which would make it possible to study forces and torques generated during the operation of symmetrical seeder coulters. The transducers that have been known up until now cannot be used to determine forces and torques for the coulter configuration adopted by the authors. For this purpose, the design of the transducer in the form of strain gauge beams was used to ensure the accumulated stress concentration. A detailed design was presented in the form of a 3D model, along with a transducer body manufactured on its basis, including the method for arranging the strain gauges thereon. Moreover, the article discusses the methodology of processing voltage signals obtained from component loads. Particular attention was paid to the methodology of determining the load capacity of the transducer structure, based on finite element method (FEM). This made it possible to choose a transducer geometry providing the expected measurement sensitivity and, at the same time, maintaining the best linearity of indications, insignificant coupling error, and a broad measurement range. The article also presents the characteristics of the transducer calibration process and a description of a special test stand designed for this purpose. The transducer developed within the scope of this work provides very high precision of load spectrum reads, thus enabling the performance of a detailed fatigue analysis of the tested designs. Additionally, the versatility it offers makes it easy to adapt to many existing test stands, which is a significant advantage because it eliminates the need to build new test stands.


2021 ◽  
Vol 13 (24) ◽  
pp. 5008
Author(s):  
Xuebo Zhang ◽  
Peixuan Yang

When the multi-receiver synthetic aperture sonar (SAS) works with a wide-bandwidth signal, the performance of the range-Doppler (R-D) algorithm is seriously affected by two approximation errors, i.e., point target reference spectrum (PTRS) error and residual quadratic coupling error. The former is generated by approximating the PTRS with the second-order term in terms of the instantaneous frequency. The latter is caused by neglecting the cross-track variance of secondary range compression (SRC). In order to improve the imaging performance in the case of wide-bandwidth signals, an improved R-D algorithm is proposed in this paper. With our method, the multi-receiver SAS data is first preprocessed based on the phase center approximation (PCA) method, and the monostatic equivalent data are obtained. Then several sub-blocks are generated in the cross-track dimension. Within each sub-block, the PTRS error and residual quadratic coupling error based on the center range of each sub-block are compensated. After this operation, all sub-blocks are coerced into a new signal, which is free of both approximation errors. Consequently, this new data is used as the input of the traditional R-D algorithm. The processing results of simulated data and real data show that the traditional R-D algorithm is just suitable for an SAS system with a narrow-bandwidth signal. The imaging performance would be seriously distorted when it is applied to an SAS system with a wide-bandwidth signal. Based on the presented method, the SAS data in both cases can be well processed. The imaging performance of the presented method is nearly identical to that of the back-projection (BP) algorithm.


2021 ◽  
pp. 107754632110079
Author(s):  
Pan Fang ◽  
Yuanguo Wang ◽  
Min Zou ◽  
Zhiliang Zhang

Multi-motor-pendulum vibration systems have been applied to design shale shakers in petroleum drilling engineering. However, synchronization of the multi-motor-pendulum vibration system is instable on account of external load disturbance and systematic parameter restriction, which is a principal factor to decrease screening efficiency of shale shakers. In this work, to maintain stability synchronization of three eccentric rotors driven by three induction motors, a combined synchronous control strategy by tracking velocity and phase among the motors is proposed. First, the dynamic model of the system is deduced based on the Lagrange equation. Second, adjacent cross-coupled control combined with master–slave control is designed to control speed and synchronization between the motors in the multi-motor-pendulum vibration system. Third, to ensure the precision and robustness of the control system, the velocity error, phase error, and coupling error controllers are designed with reaching law algorithm and global sliding mode control; and stability of the controller system is validated by the Lyapunov theorem. Finally, the effectiveness of the control strategy is verified by numerical simulation and compared with previous findings. The results indicate that synchronous state and velocity overshoot of the motors can be controlled with the combined control strategy; and robustness of the control strategy is better than other methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Liang Chen ◽  
Hanxu Sun ◽  
Wei Zhao ◽  
Tao Yu

With the rapid development of mechatronics and robotics technology, the application of robots has been extended from the industrial field to daily life and has become an indispensable part of work and daily life. The accuracy and flexibility of the operator determine the operating efficiency of the robot. Although the level of development of the operator is constantly improving, the traditional operator has a simple structure and generally adopts parallel movement or tightening. The holding structure has poor flexibility and stability, making it difficult to achieve precise position capture and control and cannot meet the requirements of delicate tasks. In this paper, a basic force analysis of the manipulator is carried out, and the change trend of the force and driving force of each joint when the manipulator is grasping objects is obtained, so as to determine that the manipulator can grasp the object stably; then, in the strength analysis of the manipulator, it is determined that the material meets the strength requirements. This paper conducts an output voltage experiment on the static performance and coupling error of the mechanical arm wrist force sensor. Secondly, in order to study the influence of the temperature change in the space environment on the zero-point output of the mechanical arm sensor, a high and low temperature test box are used to simulate the temperature brought by the temperature change to the sensor. Experiments show that the maximum coupling error of the sensor is 1.81%, which is less than 2% of the design index. This indicates that the operator sensor is used to detect the force and torque that the space operator’s edge operator experiences when it interacts with the external environment and provides the necessary power sensing information for power control and compatible operator motion control, completing some complex; the Fine project is an important prerequisite for realizing the intelligence of space operators.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Colin M. Huber ◽  
Declan A. Patton ◽  
Kathryn L. Wofford ◽  
Susan S. Margulies ◽  
D. Kacy Cullen ◽  
...  

Abstract Head impact sensors measure head kinematics in sports, and sensor accuracy is crucial for investigating the potential link between repetitive head loading and clinical outcomes. Many validation studies mount sensors to human head surrogates and compare kinematic measures during loading from a linear impactor. These studies are often unable to distinguish intrinsic instrumentation limitations from variability caused by sensor coupling. The aim of the current study was to evaluate intrinsic sensor error in angular velocity in the absence of coupling error for a common head impact sensor. Two Triax SIM-G sensors were rigidly attached to a preclinical rotational injury device and subjected to rotational events to assess sensor reproducibility and accuracy. Peak angular velocities between the SIM-G sensors paired for each test were correlated (R2 > 0.99, y = 1.00x, p < 0.001). SIM-G peak angular velocity correlated with the reference (R2 = 0.96, y = 0.82x, p < 0.001); however, SIM-G underestimated the magnitude by 15.0% ± 1.7% (p < 0.001). SIM-G angular velocity rise time (5% to 100% of peak) correlated with the reference (R2 = 0.97, y = 1.06x, p < 0.001) but exhibited a slower fall time (100% to 5% of peak) by 9.0 ± 3.7 ms (p < 0.001). Assessing sensor performance when rigidly coupled is a crucial first step to interpret on-field SIM-G rotational kinematic data. Further testing in increasing biofidelic conditions is needed to fully characterize error from other sources, such as coupling.


2020 ◽  
Vol 10 (9) ◽  
pp. 3250
Author(s):  
Fuqing Miao ◽  
Seokyoung Ahn ◽  
Yangjin Kim

In wavelength-tuning interferometry, the surface profile of the optical component is a key evaluation index. However, the systematic errors caused by the coupling error between the higher harmonics and phase shift error are considerable. In this research, a new 10N − 9 phase-shifting algorithm comprising a new polynomial window function and a DFT is developed. A new polynomial window function is developed based on characteristic polynomial theory. The characteristic of the new 10N − 9 algorithm is represented in the frequency domain by Fourier description. The phase error of the new algorithm is also discussed and compared with other phase-shifting algorithms. The surface profile of a silicon wafer was measured by using the 10N − 9 algorithm and a wavelength-tuning interferometer. The repeatability measurement error across 20 experiments was 2.045 nm, which indicates that the new 10N − 9 algorithm outperforms the conventional phase-shifting algorithm.


Sign in / Sign up

Export Citation Format

Share Document