probability distance
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Lifan Sun ◽  
Yuting Chang ◽  
Jiexin Pu ◽  
Haofang Yu ◽  
Zhe Yang

The Dempster-Shafer (D-S) theory is widely applied in various fields involved with multi-sensor information fusion for radar target tracking, which offers a useful tool for decision-making. However, the application of D-S evidence theory has some limitations when evidences are conflicting. This paper proposed a new method combining the Pignistic probability distance and the Deng entropy to address the problem. First, the Pignistic probability distance is applied to measure the conflict degree of evidences. Then, the uncertain information is measured by introducing the Deng entropy. Finally, the evidence correction factor is calculated for modifying the bodies of evidence, and the Dempster’s combination rule is adopted for evidence fusion. Simulation experiments illustrate the effectiveness of the proposed method dealing with conflicting evidences.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 526
Author(s):  
Jian Wang ◽  
Jing-wei Zhu ◽  
Yafei Song

Existing methods employed for combining temporal and spatial evidence derived from multiple sources into a single coherent description of objects and their environments lack versatility in various applications such as multi-sensor target recognition. This is addressed in the present study by proposing an adaptive evidence fusion method based on the power pignistic probability distance. This method classifies evidence sets into non-conflicting and conflicting evidence sets based on the maximum power pignistic probability distance obtained between evidence pairs in the evidence set. Non-conflicting evidence sets are fused using Dempster’s rule, while conflicting evidence sets are fused using a weighted average combination method based on the power pignistic probability distance. The superior evidence fusion performance of the proposed method is demonstrated by comparisons with the performances of seven other fusion methods based on numerical examples with four different evidence conflict scenarios. The results show that the method proposed in this paper not only can properly fuse different types of evidence, but also provides an excellent focus on the components of evidence sets with high confidence, which is conducive to timely and accurate decisions.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 572 ◽  
Author(s):  
Elizabeth B. Torres ◽  
Carla Caballero ◽  
Sejal Mistry

Autism has been largely portrayed as a psychiatric and childhood disorder. However, autism is a lifelong neurological condition that evolves over time through highly heterogeneous trajectories. These trends have not been studied in relation to normative aging trajectories, so we know very little about aging with autism. One aspect that seems to develop differently is the sense of movement, inclusive of sensory kinesthetic-reafference emerging from continuously sensed self-generated motions. These include involuntary micro-motions eluding observation, yet routinely obtainable in fMRI studies to rid images of motor artifacts. Open-access repositories offer thousands of imaging records, covering 5–65 years of age for both neurotypical and autistic individuals to ascertain the trajectories of involuntary motions. Here we introduce new computational techniques that automatically stratify different age groups in autism according to probability distance in different representational spaces. Further, we show that autistic cross-sectional population trajectories in probability space fundamentally differ from those of neurotypical controls and that after 40 years of age, there is an inflection point in autism, signaling a monotonically increasing difference away from age-matched normative involuntary motion signatures. Our work offers new age-appropriate stochastic analyses amenable to redefine basic research and provide dynamic diagnoses as the person’s nervous systems age.


Sign in / Sign up

Export Citation Format

Share Document