single strand
Recently Published Documents


TOTAL DOCUMENTS

2923
(FIVE YEARS 230)

H-INDEX

102
(FIVE YEARS 8)

Author(s):  
Raíssa Bernardes da Silva ◽  
Willian dos Reis Bertoldo ◽  
Lucila Langoni Naves ◽  
Fernanda Bernadelli de Vito ◽  
Jeziel Dener Damasceno ◽  
...  

Leishmania parasites are the causative agents of a group of neglected tropical diseases known as leishmaniasis. The molecular mechanisms employed by these parasites to adapt to the adverse conditions found in their hosts are not yet completely understood. DNA repair pathways can be used by Leishmania to enable survival in the interior of macrophages, where the parasite is constantly exposed to oxygen reactive species. In higher eukaryotes, DNA repair pathways are coordinated by the central protein kinases ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR). The enzyme Exonuclease-1 (EXO1) plays important roles in DNA replication, repair, and recombination, and it can be regulated by ATM- and ATR-mediated signaling pathways. In this study, the DNA damage response pathways in promastigote forms of L. major were investigated using bioinformatics tools, exposure of lineages to oxidizing agents and radiation damage, treatment of cells with ATM and ATR inhibitors, and flow cytometry analysis. We demonstrated high structural and important residue conservation for the catalytic activity of the putative LmjEXO1. The overexpression of putative LmjEXO1 made L. major cells more susceptible to genotoxic damage, most likely due to the nuclease activity of this enzyme and the occurrence of hyper-resection of DNA strands. These cells could be rescued by the addition of caffeine or a selective ATM inhibitor. In contrast, ATR-specific inhibition made the control cells more susceptible to oxidative damage in an LmjEXO1 overexpression-like manner. We demonstrated that ATR-specific inhibition results in the formation of extended single-stranded DNA, most likely due to EXO1 nucleasic activity. Antagonistically, ATM inhibition prevented single-strand DNA formation, which could explain the survival phenotype of lineages overexpressing LmjEXO1. These results suggest that an ATM homolog in Leishmania could act to promote end resection by putative LmjEXO1, and an ATR homologue could prevent hyper-resection, ensuring adequate repair of the parasite DNA.


2021 ◽  
Author(s):  
Waghela Deeksha ◽  
Suman Abhishek ◽  
Eerappa Rajakumara

Poly(ADP-ribosyl)ation is a post translational modification, predominantly catalyzed by Poly(ADP-ribose) polymerase 1 (PARP1) in response to DNA damage, mediating the DNA repair process to maintain genomic integrity. Single strand (SSB) and double strand (DSB) DNA breaks are bonafide stimulators of PARP1 activity. We identified that, in addition, single strand (ss) DNA also binds and stimulates the PARP1 activity. Poly(ADP-ribose) (PAR) is chemically similar to ssDNA. However, PAR mediated PARP1 regulation remains unexplored. Here, we report ZnF3, BRCT and WGR, hitherto uncharacterized, as PAR-specific reader domains of PARP1. Surprisingly, these domains recognize PARylated protein with a higher affinity compared to PAR, but do not bind to DNA. Conversely, N-terminal domains, ZnF1 and ZnF2, of PARP1 recognize DNA but not PAR. Further competition binding studies suggest that PAR binding, allosterically releases DNA from PARP1. Unexpectedly, PAR showed catalytic stimulation of PARP1 but hampers the DNA dependent stimulation. Altogether, our work discovers dedicated PAR and DNA reader domains of the PARP1, and uncovers a novel mechanism of allosteric stimulation of the catalytic activity of PARP1 but retardation of DNA-dependent activities of PARP1 by its catalytic product PAR.


2021 ◽  
Author(s):  
Bert van de Kooij ◽  
Alex Kruswick ◽  
Haico van Attikum ◽  
Michael B. Yaffe

DNA double-strand breaks (DSB) are repaired by multiple distinct pathways, with outcomes ranging from error-free repair to extensive mutagenesis and genomic loss. Repair pathway cross-talk and compensation within the DSB-repair network is incompletely understood, despite its importance for genomic stability, oncogenesis, and the outcome of genome editing by CRISPR/Cas9. To address this, we constructed and validated three fluorescent Cas9-based reporters, named DSB-Spectrum, that simultaneously quantify the contribution of multiple distinct pathways to repair of a DSB. These reporters distinguish between DSB-repair by error-free canonical non-homologous end-joining (c-NHEJ) versus homologous recombination (HR; reporter 1), mutagenic repair versus HR (reporter 2), and mutagenic end-joining versus single strand annealing (SSA) versus HR (reporter 3). Using these reporters, we show that inhibition of the essential c-NHEJ factor DNA-PKcs not only increases repair by HR, but also results in a substantial increase in mutagenic repair by SSA. We show that SSA-mediated repair of Cas9-generated DSBs can occur between Alu elements at endogenous genomic loci, and is enhanced by inhibition of DNA-PKcs. Finally, we demonstrate that the short-range end-resection factors CtIP and Mre11 promote both SSA and HR, whereas the long-range end-resection factors DNA2 and Exo1 promote SSA, but reduce HR, when both pathways compete for the same substrate. These new Cas9-based DSB-Spectrum reporters facilitate the rapid and comprehensive analysis of repair pathway crosstalk and DSB-repair outcome.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Masachika Ikegami ◽  
Shinji Kohsaka ◽  
Takeshi Hirose ◽  
Toshihide Ueno ◽  
Satoshi Inoue ◽  
...  

AbstractThe clinical sequencing of tumors is usually performed on formalin-fixed, paraffin-embedded samples and results in many sequencing errors. We identified that most of these errors are detected in chimeric reads caused by single-strand DNA molecules with microhomology. During the end-repair step of library preparation, mutations are introduced by the mis-annealing of two single-strand DNA molecules comprising homologous sequences. The mutated bases are distributed unevenly near the ends in the individual reads. Our filtering pipeline, MicroSEC, focuses on the uneven distribution of mutations in each read and removes the sequencing errors in formalin-fixed, paraffin-embedded samples without over-eliminating the mutations detected also in fresh frozen samples. Amplicon-based sequencing using 97 mutations confirmed that the sensitivity and specificity of MicroSEC were 97% (95% confidence interval: 82–100%) and 96% (95% confidence interval: 88–99%), respectively. Our pipeline will increase the reliability of the clinical sequencing and advance the cancer research using formalin-fixed, paraffin-embedded samples.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matthew J. Rossi ◽  
Sarah F. DiDomenico ◽  
Mikir Patel ◽  
Alexander V. Mazin

DNA double-strand breaks and inter-strand cross-links are the most harmful types of DNA damage that cause genomic instability that lead to cancer development. The highest fidelity pathway for repairing damaged double-stranded DNA is termed Homologous recombination (HR). Rad52 is one of the key HR proteins in eukaryotes. Although it is critical for most DNA repair and recombination events in yeast, knockouts of mammalian RAD52 lack any discernable phenotypes. As a consequence, mammalian RAD52 has been long overlooked. That is changing now, as recent work has shown RAD52 to be critical for backup DNA repair pathways in HR-deficient cancer cells. Novel findings have shed light on RAD52’s biochemical activities. RAD52 promotes DNA pairing (D-loop formation), single-strand DNA and DNA:RNA annealing, and inverse strand exchange. These activities contribute to its multiple roles in DNA damage repair including HR, single-strand annealing, break-induced replication, and RNA-mediated repair of DNA. The contributions of RAD52 that are essential to the viability of HR-deficient cancer cells are currently under investigation. These new findings make RAD52 an attractive target for the development of anti-cancer therapies against BRCA-deficient cancers.


Author(s):  
Marek Adamowicz ◽  
Richard Hailstone ◽  
Annie A. Demin ◽  
Emilia Komulainen ◽  
Hana Hanzlikova ◽  
...  

AbstractGenetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1−/− mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1−/− cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.


Sign in / Sign up

Export Citation Format

Share Document