axonemal dynein
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 40)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 221 (2) ◽  
Author(s):  
Bryony Braschi ◽  
Heymut Omran ◽  
George B. Witman ◽  
Gregory J. Pazour ◽  
K. Kevin Pfister ◽  
...  

Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.


2021 ◽  
Author(s):  
Shimaa A. Abdellatef ◽  
Hisashi Tadakuma ◽  
Kangmin Yan ◽  
Takashi Fujiwara ◽  
Kodai Fukumoto ◽  
...  

AbstractDuring repetitive bending of cilia and flagella, axonemal dynein molecules move in an oscillatory manner along a microtubule (MT), but how the minus-end-directed motor dynein can oscillate back and forth is unknown. There are various factors that may regulate the dynein activities, e.g., the nexin-dynein regulatory complex, radial spokes, and central apparatus. In order to understand the basic mechanism of the oscillatory movement, we constructed a simple model system composed of MTs, outer-arm dyneins, and DNA origami that crosslinks the MTs. Electron microscopy (EM) showed patches of dynein molecules crossbridging two MTs in two opposite orientations; the oppositely oriented dyneins are expected to produce opposing forces. The optical trapping experiments showed that the dynein-MT-DNA-origami complex actually oscillate back and forth after photolysis of caged ATP. Intriguingly, the complex, when held at one end, showed repetitive bending motions. The results show that a simple system composed of ensembles of oppositely oriented dyneins, MTs, and inter-MT crosslinkers, without the additional regulatory structures, has an intrinsic ability to cause oscillation and repetitive bending motions.


2021 ◽  
Author(s):  
Subash Godar ◽  
James Oristian ◽  
Valerie Hinsch ◽  
Katherine Wentworth ◽  
Ethan Lopez ◽  
...  

AbstractFlagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids, including trypanosomes. Trypanosoma brucei flagella exhibit a bending wave that propagates from the flagellum’s tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein- associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex- type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi, rescued the knockdown with eGFP- tagged TbLC2, and quantified TbLC2’s effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown resulted in kinetoplast mislocalization and the formation of multiple cell clusters in cell culture. We also found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to- tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids’ unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.Author SummaryKinetoplastea is a class of ciliated protists that include parasitic trypanosomes, which cause severe disease in people and livestock in tropical regions across the globe. All trypanosomes, including Trypanosoma brucei, require a cilium to provide propulsive force for directional swimming motility, host immune evasion, and various aspects of their cell cycle. Thus, a functional cilium is essential for the virulence of the parasite.Trypanosome cilia exhibit a unique tip-to-base beating mechanism, different from the base-to-tip beating of most other eukaryotic cilia. Multiple ciliary proteins are involved in the complex biophysical and biochemical mechanisms that underly the trypanosome ciliary beating. These include dynein motor proteins that power the beat, dynein-related light chains that regulate the beat, and many other proteins in the nexin-dynein regulatory complex, in the radial spokes, and associated with the central pair of microtubules, for example.Here, we identify a Tctex-type dynein light chain in T. brucei that we named TbLC2 because it has sequence homology, structural similarity, and ciliary localization like LC2 homologs in other organisms. We demonstrate that TbLC2 has critical dynein regulatory functions, with implications on the unique aspects of trypanosome ciliary beating and cellular swimming motility. Our study represents an additional step toward understanding the functions of the trypanosome ciliary proteome, which could provide novel therapeutic targets against the unique aspects of trypanosome ciliary motility.


Biology Open ◽  
2021 ◽  
Author(s):  
Petra zur Lage ◽  
Zhiyan Xi ◽  
Jennifer Lennon ◽  
Iain Hunter ◽  
Wai Kit Chan ◽  
...  

Ciliary motility is powered by a suite of highly conserved axoneme-specific dynein motor complexes. In humans the impairment of these motors through mutation results in the disease, Primary Ciliary Dyskinesia (PCD). Studies in Drosophila have helped to validate several PCD genes whose products are required for cytoplasmic pre-assembly of axonemal dynein motors. Here we report the characterisation of the Drosophila orthologue of the less known assembly factor, DNAAF3. This gene, CG17669 (Dnaaf3), is expressed exclusively in developing mechanosensory chordotonal (Ch) neurons and the cells that generate spermatozoa, the only two Drosophila cell types bearing cilia/flagella containing dynein motors. Mutation of Dnaaf3 results in larvae that are deaf and adults that are uncoordinated, indicating defective Ch neuron function. The mutant Ch neuron cilia of the antenna specifically lack dynein arms, while Ca imaging in larvae reveals a complete loss of Ch neuron response to vibration stimulus, confirming that mechanotransduction relies on ciliary dynein motors. Mutant males are infertile with immotile sperm whose flagella lack dynein arms and show axoneme disruption. Analysis of proteomic changes suggest a reduction in heavy chains of all axonemal dynein forms, consistent with an impairment of dynein pre-assembly.


Author(s):  
Hong T. Lin ◽  
Anita Gupta ◽  
Kevin E. Bove ◽  
Sara Szabo ◽  
Fang Xu ◽  
...  

AbstractThe dynein axonemal heavy chain 5 gene codes for a subunit of axonemal dynein necessary for ciliary motor function. Though research has elucidated the consequences of some variants in this gene, it is still unclear whether many variants in the DNAH5 locus are benign or pathogenic due to the rarity of primary ciliary dyskinesia (PCD, of which Kartagener's syndrome is a subset). Here, we introduce the case of an infant boy presenting with the classical findings of PCD along with visceral heterotaxia and neonatal cholestasis. Genetic testing indicated that the patient is a compound heterozygote with a pathogenic c.8498G > A (known as pathogenic) on the maternally derived allele and two variants of uncertain significance, c.1206T > A and c.7800T > G, on the paternally derived allele. As PCD is autosomal recessive, we conclude that one, or both, of these paternally derived variants are pathogenic. To our knowledge, this is the first time that the clinical implications of c.1206T > A (p.Asn402Lys) and c.7800T > G (p.Ile2600Met) are documented. Furthermore, we use this case as an example to recommend clinicians to assess for PCD and laterality defects when presented with severe infantile cholestasis. While the association of cholestasis with PCD is relatively uncommon, PCD is a risk factor for increased prevalence of biliary atresia and infections, both of which are known causes of cholestasis in early infancy.


2021 ◽  
Vol 134 (15) ◽  
Author(s):  
Stephen M. King

ABSTRACT Axonemal dyneins power the beating of motile cilia and flagella. These massive multimeric motor complexes are assembled in the cytoplasm, and subsequently trafficked to cilia and incorporated into the axonemal superstructure. Numerous cytoplasmic factors are required for the dynein assembly process, and, in mammals, defects lead to primary ciliary dyskinesia, which results in infertility, bronchial problems and failure to set up the left-right body axis correctly. Liquid–liquid phase separation (LLPS) has been proposed to underlie the formation of numerous membrane-less intracellular assemblies or condensates. In multiciliated cells, cytoplasmic assembly of axonemal dyneins also occurs in condensates that exhibit liquid-like properties, including fusion, fission and rapid exchange of components both within condensates and with bulk cytoplasm. However, a recent extensive meta-analysis suggests that the general methods used to define LLPS systems in vivo may not readily distinguish LLPS from other mechanisms. Here, I consider the time and length scales of axonemal dynein heavy chain synthesis, and the possibility that during translation of dynein heavy chain mRNAs, polysomes are crosslinked via partially assembled proteins. I propose that axonemal dynein factory formation in the cytoplasm may be a direct consequence of the sheer scale and complexity of the assembly process itself.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1885
Author(s):  
Dinu Antony ◽  
Han G. Brunner ◽  
Miriam Schmidts

Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.


Sign in / Sign up

Export Citation Format

Share Document