tumor entities
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 52)

H-INDEX

17
(FIVE YEARS 3)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Johanna Born ◽  
Alexander Hendricks ◽  
Charlotte Hauser ◽  
Jan-Hendrik Egberts ◽  
Thomas Becker ◽  
...  

Colorectal carcinoma (CRC) belongs to the most common tumor entities in western countries. Circulating tumor cells (CTC) in blood of CRC patients are a powerful prognostic and predictive biomarker. However, whether CTC-associated markers can also be used for early CRC detection and discrimination from benign diseases is not known. This study investigated the presence of CTC-associated markers CK20, PLS3, LAD1, and DEFA5 in blood of patients with benign inflammatory intestinal disease (IID) and their correlation with malignancy. The detection rate of CK20 and DEFA5 significantly differed between diseased patients and healthy controls. LAD1 and PLS3 were detected in all samples with clear differences in gene expression. DEFA5 expression was higher in CRC and IID patients compared to healthy donors, while CK20 and PLS3 were lower in CRC compared to IID patients or healthy controls. Overall, all CTC-associated markers were detectable in blood of IID patients, but not correlating with inflammation severity. Finally, PLS3 emerged as a suitable marker for differentiation between malignant and non-malignant intestinal diseases or healthy controls, however its suitability for early CRC detection needs to be further validated.


2021 ◽  
Vol 22 (24) ◽  
pp. 13311
Author(s):  
Katrin Pansy ◽  
Barbara Uhl ◽  
Jelena Krstic ◽  
Marta Szmyra ◽  
Karoline Fechter ◽  
...  

The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process, and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi14-vi14
Author(s):  
Franz Ricklefs ◽  
Tammo Ricklefs ◽  
Cecile Maire ◽  
Amanda Salviano da Silva ◽  
Kathrin Wollman ◽  
...  

Abstract Genome-wide methylation profiling has recently been developed into a tool that allows subtype tumor classification in central nervous system (CNS) tumors. We previously showed that extracellular vesicle (EV) DNA faithfully reflects the tumor methylation class, including information on the IDH mutation and MGMT promoter methylation status. Furthermore we showed that circulating plasma EVs are elevated in CNS tumor patients in comparison to non-tumor donors (HD) controls with tumor related protein profiles. We now investigated, whether the methylation signatures of circulating DNA (both EV and cfNDA) can be used in liquid biopsy approaches for CNS tumor detection and classification. We isolated DNA from circulating EVs (n=27), cfDNA (n=27) and tumor tissue DNA (n=90) of patients with glioblastoma (GBM), meningioma (MGN) and cerebral metastases (CM). Patients undergoing epilepsy surgery as well as aneurysm clipping were used as non-tumor controls (HD, n= 7). EVs were classified by nanoparticle analysis, immunoblotting, imaging flow cytometry and electron microscopy. Isolated EV-DNA comprised many sorts of molecular weight (up tp >10Kb) in comparison to cfDNA (130-140bp). Healthy donors and tumor patients showed not differences in their DNA size profiles. We performed genome-wide methylation profiling by 850k Illumina EPIC arrays for all DNA analytes and tumor entities. Linear models and empirical Bayes methods identified significant differentially methylated CpGs (GBM vs. HD, MGN, vs HD, CM vs. HD), that revealed tumor specific signatures to detect and discriminate different CNS tumor entities. Visualization of differentially methylated CPGs by dimension reduction (PCA, t-SNE, Umap) verified tumor specific clusters. cfDNA and EV-DNA exhibited distinctive individual CpG profiles. Our study shows that the methylation signature of circulating EV DNA and cfDNA can be used to separate healthy individuals from tumor patients and could potentially complement standard-of-care imaging to improve tumor detection, classification and surveillance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Günter Schneider ◽  
Matthias Wirth ◽  
Ulrich Keller ◽  
Dieter Saur

AbstractThe incidence and lethality of pancreatic ductal adenocarcinoma (PDAC) will continue to increase in the next decade. For most patients, chemotherapeutic combination therapies remain the standard of care. The development and successful implementation of precision oncology in other gastrointestinal tumor entities point to opportunities also for PDAC. Therefore, markers linked to specific therapeutic responses and important subgroups of the disease are needed. The MYC oncogene is a relevant driver in PDAC and is linked to drug resistance and sensitivity. Here, we update recent insights into MYC biology in PDAC, summarize the connections between MYC and drug responses, and point to an opportunity to image MYC non-invasively. In sum, we propose MYC-associated biology as a basis for the development of concepts for precision oncology in PDAC.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2652
Author(s):  
Cristian Prieto-Garcia ◽  
Ines Tomašković ◽  
Varun Jayeshkumar Shah ◽  
Ivan Dikic ◽  
Markus Diefenbacher

Squamous cell carcinomas are therapeutically challenging tumor entities. Low response rates to radiotherapy and chemotherapy are commonly observed in squamous patients and, accordingly, the mortality rate is relatively high compared to other tumor entities. Recently, targeting USP28 has been emerged as a potential alternative to improve the therapeutic response and clinical outcomes of squamous patients. USP28 is a catalytically active deubiquitinase that governs a plethora of biological processes, including cellular proliferation, DNA damage repair, apoptosis and oncogenesis. In squamous cell carcinoma, USP28 is strongly expressed and stabilizes the essential squamous transcription factor ΔNp63, together with important oncogenic factors, such as NOTCH1, c-MYC and c-JUN. It is presumed that USP28 is an oncoprotein; however, recent data suggest that the deubiquitinase also has an antineoplastic effect regulating important tumor suppressor proteins, such as p53 and CHK2. In this review, we discuss: 1) The emerging role of USP28 in cancer. 2) The complexity and mutational landscape of squamous tumors. 3) The genetic alterations and cellular pathways that determine the function of USP28 in squamous cancer. 4) The development and current state of novel USP28 inhibitors.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A8.2-A9
Author(s):  
NC Blessin ◽  
E Bady ◽  
T Mandelkow ◽  
C Yang ◽  
J Raedler ◽  
...  

BackgroundThe quantification of PD-L1 (programmed cell death ligand 1) has been used to predict patient’s survival, to characterize the tumor immune microenvironment, and to predict response to immune checkpoint therapies. However, a framework to assess the PD-L1 status with a high interobserver reproducibility on tumor cells and different types of immune cells has yet to be established.Materials and MethodsTo study the impact of PD-L1 expression on the tumor immune microenvironment and patient outcome, a framework for fully automated PD-L1 quantification on tumor cells and immune cells was established and validated. Automated PD-L1 quantification was facilitated by incorporating three different deep learning steps for the analysis of more than 80 different neoplasms from more than 10’000 tumor specimens using a bleach & stain 15-marker multiplex fluorescence immunohistochemistry panel (i.e., PD-L1, PD-1, CTLA-4, panCK, CD68, CD163, CD11c, iNOS, CD3, CD8, CD4, FOXP3, CD20, Ki67, CD31). Clinicopathological parameter were available for more than 30 tumor entities and overall survival data were available for 1517 breast cancer specimens.ResultsComparing the automated deep-learning based PD-L1 quantification with conventional brightfield PD-L1 data revealed a high concordance in tumor cells (p<0.0001) as well as immune cells (p<0.0001) and an accuracy of the automated PD-L1 quantification ranging from 90% to 95.2%. Across all tumor entities, the PD-L1 expression level was significantly higher in distinct macrophage/dendritic cell (DC) subsets (identified by CD68, CD163, CD11c, iNOS; p<000.1) and in macrophages/DCs located in the Stroma (p<0.0001) as compared to intratumoral macrophages/DC subsets. Across all different tumor entities, the PD-L1 expression was highly variable and distinct PD-L1 driven immune phenotypes were identified based on the PD-L1 intensity on both tumor and immune cells, the distance between non-exhausted T-cell subsets (i.e. PD-1 and CTLA-4 expression on CD3+CD8+ cytotoxic T-cells, CD3+CD4+ T-helper cells, CD3+CD4+FOXP3+ regulatory T-cells) and tumor cells as well as macrophage/(DC) subtypes. In breast cancer, the PD-L1 fluorescence intensity on tumor cells showed a significantly higher predictive performance for overall survival with an area under receiver operating curves (AUC) of 0.72 (p<0.0001) than the percentage of PD-L1+ tumor cells (AUC: 0.54). In PD-L1 positive as well as negative breast cancers a close spatial relationship between T- cell subsets (CD3+CD4±CD8±FOXP3±PD-1±CTLA-4±) and Macrophage/DC subsets (CD68±CD163±CD11c±iNOS) was found prognostic relevant (p<0.0001).ConclusionsIn conclusion, multiplex immunofluorescence PD-L1 assessment provides cutoff-free/continuous PD-L1 data which are superior to the conventional percentage of PD-L1+ tumor cells and of high prognostic relevance. The combined analysis of spatial PD-L1/PD-1 data and more than 20 different immune cell subtypes of the immune tumor microenvironment revealed distinct PD-L1 immune phenotypes.Disclosure InformationN.C. Blessin: None. E. Bady: None. T. Mandelkow: None. C. Yang: None. J. Raedler: None. R. Simon: None. C. Fraune: None. M. Lennartz: None. S. Minner: None. E. Burandt: None. D. Höflmayer: None. G. Sauter: None. S.A. Weidemann: None.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S108-S109
Author(s):  
K Jansen ◽  
S Steurer

Abstract Introduction/Objective Introduction: DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. Methods/Case Report Methods: To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Results (if a Case Study enter NA) Results: DOG1 immunostaining was found in 67 tumor types including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n=1,002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). Conclusion High DOG1 expression was linked to estrogen receptor expression in breast cancer (p&lt;0.0001) and absence of HPV infection in squamous cell carcinomas (p=0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.


2021 ◽  
Vol 9 (Suppl 1) ◽  
pp. A9.3-A10
Author(s):  
D Dum ◽  
TLC Henke ◽  
T Mandelkow ◽  
E Bady ◽  
R Simon ◽  
...  

BackgroundCTLA-4 is an inhibitory immune checkpoint receptor and a negative regulator of anti-tumor T-cell function. This study aimed at a comparative analysis of CTLA-4+ cells between different tumor entities.Materials and MethodsTo quantify CTLA-4+ cells, 4,582 tumor samples from 90 different tumor entities as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry in a tissue microarray format. Two different antibody clones (MSVA-152R and CAL49) were validated and quantified using a deep learning framework for automated exclusion of unspecific immunostaining.ResultsComparing both CTLA-4 antibodies revealed a clone dependent unspecific staining pattern in adrenal cortical adenoma (63%) for MSVA-152R and in pheochromocytoma (67%) as well as hepatocellular carcinoma (36%) for CAL49. After automated exclusion of non-specific staining reaction (3.6%), a strong correlation was observed for the densities of CTLA-4+ lymphocytes obtained by both antibodies (r=0.87; p<0.0001). The mean density of CTLA-4+ cells was 674±1482 cells/mm2 and ranged from 71±175 cells/mm2 in leiomyoma to 5916±3826 cells/mm2 in Hodgkin’s lymphoma. Within epithelial tumors, the density of CTLA-4+ lymphocytes were higher in squamous cell (421±467 cells/mm2) and urothelial carcinomas (419±347 cells/mm2) than in adenocarcinomas (269±375 cells/mm2) and renal cell neoplasms (256±269 cells/mm2). A high CTLA-4+ cell density was linked to low pT category (p<0.0001), absent lymph node metastases (p=0.0354), and PD-L1 expression in tumor cells or inflammatory cells (p<0.0001 each). A high CTLA-4/CD3-ratio was linked to absent lymph node metastases (p=0.0295) and to PD-L1 positivity on immune cells (p<0.0026).ConclusionsMarked differences exist in the number of CTLA-4+ lymphocytes between tumors. Analyzing two independent antibodies by a deep learning framework can facilitate automated quantification of immunohistochemically analyzed target proteins such as CTLA-4.Disclosure InformationD. Dum: None. T.L.C. Henke: None. T. Mandelkow: None. E. Bady: None. R. Simon: None. G. Sauter: None. S. Steuerer: None. W. Wilczak: None. E. Burandt: None. J. Raedler: None. M. Lennartz: None. N.C. Blessin: None.


2021 ◽  
Vol 156 (Supplement_1) ◽  
pp. S109-S109
Author(s):  
V Reiswich ◽  
D Dum

Abstract Introduction/Objective Uroplakin 1B (Upk1b) protein is relevant for stabilizing and strengthening epithelial cells that line the bladder. It helps to prevent urothelial cells from rupturing during bladder distension. Based on RNA expression studies Upk1b is expressed in a limited number of normal tissues. Methods/Case Report To comprehensively evaluate the potential diagnostic and prognostic utility of Upk1b expression analysis, a tissue microarray containing 15,182 samples from 127 different tumor types and subtypes and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. Results (if a Case Study enter NA) Upk1b positivity was found in 61 (48%) different tumor types including 50 (39%) with at least one moderately positive and 39 tumor types (31%) with at least one strongly positive tumor. The highest positivity rate and the highest levels of expression was found in urothelial neoplasms (58-95%), Brenner tumors of the ovary (92%), epitheloid mesothelioma (87%), serous carcinomas of the ovary (58%) and the endometrium (53%) as well as squamous cell carcinomas of various sites of origin. Immunostaining was infrequent in lung adenocarcinoma (0%) and largely absent in colorectal (0.7%) or prostatic adenocarcinoma (1.3%). In urothelial tumors cancer, low Upk1b expression was linked to high grade and invasive tumor growth (p&lt;0.0001 each) as well as nodal metastasis (p=0.0006) but an unequivocal link to unfavorable tumor features was lacking in various other tumor entities. Conclusion In conclusion, the differential Upk1b expression in different tumor entities suggests potential diagnostic applications of Upk1b immunohistochemistry in panels for the distinction of malignant mesothelioma from adenocarcinoma of the lung, urothelial carcinoma from prostatic adenocarcinoma in the bladder, or pancreatico-biliary and gastro-esophageal from colorectal adenocarcinomas.


Sign in / Sign up

Export Citation Format

Share Document