pilot scale reactor
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 139 ◽  
pp. 85-95
Author(s):  
Azd Zayoud ◽  
Hang Dao Thi ◽  
Marvin Kusenberg ◽  
Andreas Eschenbacher ◽  
Uros Kresovic ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 894
Author(s):  
Hanxiao Bian ◽  
Zhiping Zhu ◽  
Qianwen Sui ◽  
Shunli Wang

The problem of membrane fouling is a key factor restricting the application of the membrane bioreactor (MBR) in the partial nitrosation (PN) and anaerobic ammonia oxidation (anammox) processes. In this study, the pilot-scale continuous flow MBR was used to start up the partial nitrosation process in order to investigate the change trend of mid-transmembrane pressure (TMP) in the process of start-up, which was further explored to clarify the membrane fouling mechanism in the pilot-scale reactor. The results showed that the MBR system was in a stable operating condition during the partial nitrosation operation and that the online automatic backwash operation mode is beneficial in alleviating membrane fouling and reducing the cost of membrane washing. Particular attention was paid to the influence trend of free ammonia (FA)on membrane fouling, and it was found that the increase in FA concentration plays the most critical role in membrane fouling. The increase in FA concentration led to an increase in the extracellular polymer (EPS), dissolved microorganism product (SMP) and soluble chemical oxygen demand (SCOD) concentration. FA was extremely significantly correlated with EPS and SCOD, and the FA concentration was approximately 20.7 mg/L. The SCODeff (effluent SCOD concentration) concentration was approximately 147 mg/L higher than the SCODinf (influent SCOD concentration) concentration. FA mainly affects membrane fouling by affecting the concentration of EPS and SCOD.


2021 ◽  

<p>A pilot-scale sequencing batch reactor (SBR) for anaerobic ammonium oxidation (anammox) of bacteria culture was used along with a batch experimental reaction device to study the effect of NO2--N concentration on the activity of anammox bacteria and the recovery of N2H4 on anammox bacteria after inhibition by high concentrations of NO2--N. The optimal influent NO2--N concentration in the pilot-scale reactor was 72.0 mg/L, with its total nitrogen consumption being approximately 40.0 g/d. Influent water NO2--N concentrations greater than 100 mg/L had a serious inhibitory effect on the anammox bacteria. At an influent NO2--N concentration of 120.35 mg/L, the addition of 10.0-15.0 mg/L of N2H4, restored the activity of granular anammox bacteria; the total nitrogen consumption was increased by 69.96%. Microbiological analysis showed that a change in NO2--N concentration within the range of 18.87-115.39 mg/L did not affect the microbial population structure of the pilot-scale reactor, wherein Candidatus Kuenenia was the dominant bacterial species. In samples collected at stages A0 (sludge inoculation), A20 (the number indicates the NO2--N concentration, which, in this stage, was 20 mg/L), A40, A60, A80, and A100, the proportion of Candidatus Kuenenia was 27%, 23%, 36%, 26%, 34%, and 33%, respectively.</p>


Author(s):  
Sören Bernauer ◽  
Mathias Schöpf ◽  
Johannes Khinast ◽  
Timo Hardiman

The power input and gas-liquid mass transfer rank among the most important industrial fermentation process parameters. The present study analyzes the power input and gas hold-up as a function of the flow regime, impeller diameter, and rheological properties in a pilot scale reactor (160 L) equipped with four Rushton impellers. This leads to four dimensionless numbers for predicting measurements in pilot and industrial bioreactors (110 and 170 m3) with a standard deviation of 7 % to 29 %. This is unparalleled for the underlying aerated and non-Newtonian fermentation broths. Several existing correlation equations are discussed to be dissatisfying (up to 130 % deviation), and might be sufficiently valid only within scale or for small scaling factors. The introduced approach predicts adequately accurate over three orders of magnitude. Based on these encouraging results, we identified the Galilei number and the power concept as the central elements in combination with the consequent dimensional analysis for an efficient scaling betweeen pilot and industrial scale.


Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119604
Author(s):  
Francesco Parrillo ◽  
Filomena Ardolino ◽  
Gabriele Calì ◽  
Davide Marotto ◽  
Alberto Pettinau ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 469
Author(s):  
Mohammad Reza Ghaani ◽  
Judith M. Schicks ◽  
Niall J. English

Clathrate hydrates are ice-like, crystalline solids, composed of a three-dimensional network of hydrogen bonded water molecules that confines gas molecules in well-defined cavities that can store gases as a solid solution. Ideally, hydrogen hydrates can store hydrogen with a maximum theoretical capacity of about 5.4 wt%. However, the pressures necessary for the formation of such a hydrogen hydrate are 180–220 MPa and therefore too high for large-scale plants and industrial use. Thus, since the early 1990s, there have been numerous studies to optimize pressure and temperature conditions for hydrogen formation and storage and to develop a proper reactor type via optimisation of the heat and mass transfer to maximise hydrate storage capacity in the resulting hydrate phase. So far, the construction of the reactor has been developed for small, sub-litre scale; and indeed, many attempts were reported for pilot-scale reactor design, on the multiple-litre scale and larger. The purpose of this review article is to compile and summarise this knowledge in a single article and to highlight hydrogen-storage prospects and future challenges.


2020 ◽  
Author(s):  
Anna Bacardit ◽  
Silvia Sorolla ◽  
Concepcio Casas ◽  
Lluis Olle ◽  
Mireia Conde

The manufacture of upholstery and automotive articles is linked to the release of Volatile Organic Compounds (hereinafter VOCs) during their manufacture, which have short and long-term effects on the health of users and the environment. In the leather sector, around 40 kg of VOCs are generated per 1000 kg of raw skin. This research work has focused on the synthesis of new and more sustainable urethane-based polymers that, in turn, allow the quality requirements of the finish to be met, which vary depending on the leather article manufactured. The main objective of the study is to minimize the content of VOCs in the different aliphatic polyurethanes synthesized in a pilot-scale reactor, making small modifications to the synthesis formulations. The synthesis route developed is based on the preparation of polymers of ionomeric polyurethanes and their subsequent dispersion in water. In the synthesis processes developed, the content of coalescing solvents and neutralizing agents, which directly contribute to the concentration of VOCs of the urethane polymers, is eliminated and / or minimized as much as possible. The new urethane-based polymers obtained have been analyzed according to the parameters of pH, viscosity, density and percentage of solids in the resin. Likewise, organoleptic tests (color, transparency, hardness, touch and tacking) and physical tests (tensile strength, water absorption, hardness and color change at 100°C for 24 hours) have been carried out on the film corresponding to each synthesized polyurethane resin. These products will be introduced in finishing formulations designed to obtain high-performance upholstery and automotive leather with minimal impact in terms of VOC content at the pilot level. Tests of fastness and physical resistance have been carried out to evaluate the performance of these leathers.


Sign in / Sign up

Export Citation Format

Share Document