classical computer
Recently Published Documents


TOTAL DOCUMENTS

106
(FIVE YEARS 49)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 6 (1) ◽  
pp. 7
Author(s):  
Rao Mikkilineni

All living beings use autopoiesis and cognition to manage their “life” processes from birth through death. Autopoiesis enables them to use the specification in their genomes to instantiate themselves using matter and energy transformations. They reproduce, replicate, and manage their stability. Cognition allows them to process information into knowledge and use it to manage its interactions between various constituent parts within the system and its interaction with the environment. Currently, various attempts are underway to make modern computers mimic the resilience and intelligence of living beings using symbolic and sub-symbolic computing. We discuss here the limitations of classical computer science for implementing autopoietic and cognitive behaviors in digital machines. We propose a new architecture applying the general theory of information (GTI) and pave the path to make digital automata mimic living organisms by exhibiting autopoiesis and cognitive behaviors. The new science, based on GTI, asserts that information is a fundamental constituent of the physical world and that living beings convert information into knowledge using physical structures that use matter and energy. Our proposal uses the tools derived from GTI to provide a common knowledge representation from existing symbolic and sub-symbolic computing structures to implement autopoiesis and cognitive behaviors.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012023
Author(s):  
Mukta Nivelkar ◽  
S. G. Bhirud

Abstract Mechanism of quantum computing helps to propose several task of machine learning in quantum technology. Quantum computing is enriched with quantum mechanics such as superposition and entanglement for making new standard of computation which will be far different than classical computer. Qubit is sole of quantum technology and help to use quantum mechanism for several tasks. Tasks which are non-computable by classical machine can be solved by quantum technology and these tasks are classically hard to compute and categorised as complex computations. Machine learning on classical models is very well set but it has more computational requirements based on complex and high-volume data processing. Supervised machine learning modelling using quantum computing deals with feature selection, parameter encoding and parameterized circuit formation. This paper highlights on integration of quantum computation and machine learning which will make sense on quantum machine learning modeling. Modelling of quantum parameterized circuit, Quantum feature set design and implementation for sample data is discussed. Supervised machine learning using quantum mechanism such as superposition and entanglement are articulated. Quantum machine learning helps to enhance the various classical machine learning methods for better analysis and prediction using complex measurement.


2022 ◽  
Vol 22 (1&2) ◽  
pp. 53-85
Author(s):  
Thomas G. Wong

The task of finding an entry in an unsorted list of $N$ elements famously takes $O(N)$ queries to an oracle for a classical computer and $O(\sqrt{N})$ queries for a quantum computer using Grover's algorithm. Reformulated as a spatial search problem, this corresponds to searching the complete graph, or all-to-all network, for a marked vertex by querying an oracle. In this tutorial, we derive how discrete- and continuous-time (classical) random walks and quantum walks solve this problem in a thorough and pedagogical manner, providing an accessible introduction to how random and quantum walks can be used to search spatial regions. Some of the results are already known, but many are new. For large $N$, the random walks converge to the same evolution, both taking $N \ln(1/\epsilon)$ time to reach a success probability of $1-\epsilon$. In contrast, the discrete-time quantum walk asymptotically takes $\pi\sqrt{N}/2\sqrt{2}$ timesteps to reach a success probability of $1/2$, while the continuous-time quantum walk takes $\pi\sqrt{N}/2$ time to reach a success probability of $1$.


2021 ◽  
Vol 2140 (1) ◽  
pp. 012032
Author(s):  
V L Khmelev ◽  
A F Fominykh

Abstract This article observe a using of active infrared beam location as roadway surface quality control. Changes in the spatial structure of the emitted IR radiation by surfaces within the capture scene allow creating a depth map of this scene. An optical camera makes it possible to use classical computer vision methods for stitching a depth map. For testing the possibility of using this approach, we made statistical studies on a multiple sample of distance measurements. Here we explain two experimental schemes with a programmable mechanical scanning system. The first one, we had determined the distance, which the image is capture accurately. The second, we measure the planar resolution, a minimum size of the defect that recognize by the infrared beam location system.


2021 ◽  
Vol 11 (23) ◽  
pp. 11386
Author(s):  
Kodai Shiba ◽  
Chih-Chieh Chen ◽  
Masaru Sogabe ◽  
Katsuyoshi Sakamoto ◽  
Tomah Sogabe

Quantum computing is suggested as a new tool to deal with large data set for machine learning applications. However, many quantum algorithms are too expensive to fit into the small-scale quantum hardware available today and the loading of big classical data into small quantum memory is still an unsolved obstacle. These difficulties lead to the study of quantum-inspired techniques using classical computation. In this work, we propose a new classification method based on support vectors from a DBSCAN–Deutsch–Jozsa ranking and an Ising prediction model. The proposed algorithm has an advantage over standard classical SVM in the scaling with respect to the number of training data at the training phase. The method can be executed in a pure classical computer and can be accelerated in a hybrid quantum–classical computing environment. We demonstrate the applicability of the proposed algorithm with simulations and theory.


Author(s):  
Rao Mikkilineni

The holy grail of Artificial Intelligence (AI) has been to mimic human intelligence using computing machines. Autopoiesis which refers to a system with well-defined identity and is capable of re-producing and maintaining itself and cognition which is the ability to process information, apply knowledge, and change the circumstance are associated with resilience and intelligence. While classical computer science (CCS) with symbolic and sub-symbolic computing has given us tools to decipher the mysteries of physical, chemical and biological systems in nature and allowed us to model, analyze various observations and use information to optimize our interactions with each other and with our environment, it falls short in reproducing even the basic behaviors of living organisms. We present the foundational shortcomings of CCS and discuss the science of infor-mation processing structures (SIPS) that allows us to fill the gaps. SIPS allows us to model su-per-symbolic computations and infuse autopoietic and cognitive behaviors into digital machines. They use common knowledge representation from the information gained using both symbolic and sub-symbolic computations in the form of system-wide knowledge networks consisting of knowledge nodes and information sharing channels with other knowledge nodes. The knowledge nodes wired together fire together to exhibit autopoietic and cognitive behaviors.


2021 ◽  
Author(s):  
Ze-Pei Cian ◽  
Daiwei Zhu ◽  
Crystal Noel ◽  
Andrew Risinger ◽  
Debopriyo Biswas ◽  
...  

Abstract As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information for a single QC. On the other hand, a comparison between different QCs on the same arbitrary circuit provides a lower-bound for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform fidelities.


Author(s):  
R. Vilela Mendes

The two essential ideas in this paper are, on the one hand, that a considerable amount of the power of quantum computation may be obtained by adding to a classical computer a few specialized quantum modules and on the other hand, that such modules may be constructed out of classical systems obeying quantum-like equations where a space coordinate is the evolution parameter (thus playing the role of time in the quantum algorithms).


2021 ◽  
Vol 7 (8) ◽  
pp. 117
Author(s):  
Luca Crippa ◽  
Francesco Tacchino ◽  
Mario Chizzini ◽  
Antonello Aita ◽  
Michele Grossi ◽  
...  

Magnetic molecules are prototypical systems to investigate peculiar quantum mechanical phenomena. As such, simulating their static and dynamical behavior is intrinsically difficult for a classical computer, due to the exponential increase of required resources with the system size. Quantum computers solve this issue by providing an inherently quantum platform, suited to describe these magnetic systems. Here, we show that both the ground state properties and the spin dynamics of magnetic molecules can be simulated on prototype quantum computers, based on superconducting qubits. In particular, we study small-size anti-ferromagnetic spin chains and rings, which are ideal test-beds for these pioneering devices. We use the variational quantum eigensolver algorithm to determine the ground state wave-function with targeted ansatzes fulfilling the spin symmetries of the investigated models. The coherent spin dynamics are simulated by computing dynamical correlation functions, an essential ingredient to extract many experimentally accessible properties, such as the inelastic neutron cross-section.


2021 ◽  
Vol 7 (8) ◽  
pp. 143
Author(s):  
Clément Royer ◽  
Jérémie Sublime ◽  
Florence Rossant ◽  
Michel Paques

Age-related macular degeneration (ARMD), a major cause of sight impairment for elderly people, is still not well understood despite intensive research. Measuring the size of the lesions in the fundus is the main biomarker of the severity of the disease and as such is widely used in clinical trials yet only relies on manual segmentation. Artificial intelligence, in particular automatic image analysis based on neural networks, has a major role to play in better understanding the disease, by analyzing the intrinsic optical properties of dry ARMD lesions from patient images. In this paper, we propose a comparison of automatic segmentation methods (classical computer vision method, machine learning method and deep learning method) in an unsupervised context applied on cSLO IR images. Among the methods compared, we propose an adaptation of a fully convolutional network, called W-net, as an efficient method for the segmentation of ARMD lesions. Unlike supervised segmentation methods, our algorithm does not require annotated data which are very difficult to obtain in this application. Our method was tested on a dataset of 328 images and has shown to reach higher quality results than other compared unsupervised methods with a F1 score of 0.87, while having a more stable model, even though in some specific cases, texture/edges-based methods can produce relevant results.


Sign in / Sign up

Export Citation Format

Share Document