protein expression profiles
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 80)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Rheal A. Towner ◽  
James Hocker ◽  
Nataliya Smith ◽  
Debra Saunders ◽  
James Battiste ◽  
...  

Current therapies for high-grade gliomas, particularly glioblastomas (GBM), do not extend patient survival beyond 16–22 months. OKN-007 (OKlahoma Nitrone 007), which is currently in phase II (multi-institutional) clinical trials for GBM patients, and has demonstrated efficacy in several rodent and human xenograft glioma models, shows some promise as an anti-glioma therapeutic, as it affects most aspects of tumorigenesis (tumor cell proliferation, angiogenesis, migration, and apoptosis). Combined with the chemotherapeutic agent temozolomide (TMZ), OKN-007 is even more effective by affecting chemo-resistant tumor cells. In this study, mass spectrometry (MS) methodology ESI-MS, mass peak analysis (Leave One Out Cross Validation (LOOCV) and tandem MS peptide sequence analyses), and bioinformatics analyses (Ingenuity® Pathway Analysis (IPA®), were used to identify up- or down-regulated proteins in the blood sera of F98 glioma-bearing rats, that were either untreated or treated with OKN-007. Proteins of interest identified by tandem MS-MS that were decreased in sera from tumor-bearing rats that were either OKN-007-treated or untreated included ABCA2, ATP5B, CNTN2, ITGA3, KMT2D, MYCBP2, NOTCH3, and VCAN. Conversely, proteins of interest in tumor-bearing rats that were elevated following OKN-007 treatment included ABCA6, ADAMTS18, VWA8, MACF1, and LAMA5. These findings, in general, support our previous gene analysis, indicating that OKN-007 may be effective against the ECM. These findings also surmise that OKN-007 may be more effective against oligodendrogliomas, other brain tumors such as medulloblastoma, and possibly other types of cancers.


2022 ◽  
Author(s):  
Jinghua Cheng ◽  
Jie Tao ◽  
Benqiang Li ◽  
Ying Shi ◽  
Huili liu

Abstract Background: From the 1078 diarrhea stools tested in our survey from 2017 to 2020 in local area of China, PEDV was the key pathogen which was closely related to the death of diarrhea piglets. Besides, co-infection of PEDV-positive samples with BVDV reached 17.24%. Although BVDV infection in swine is typically subclinical, the effect of PEDV and BVDV coinfection on disease severity and the potential molecular mechanism of coinfection with these two viruses remain unknown.Methods: In this study, we developed a model of coinfection with porcine epidemic diarrhea virus (PEDV) and bovine viral diarrhea virus (BVDV) in PK15 cells, and a tandem mass tag (TMT) combined with LC–MS/MS proteomic approach was used to identify differential protein expression profiles. Additionally, we take the drug experiments to explore the inflammatory response induced by PEDV or BVDV mono- or coinfection.Results: A total of 1094, 1538, and 1482 differentially expressed proteins (DEPs) were identified upon PEDV monoinfection, BVDV monoinfection and PEDV/BVDV coinfection, respectively. KEGG pathway analysis revealed that PEDV and BVDV coinfection leaded to a highly significantly enrichment of inflammatory bowel disease (IBD) pathway. In addition, the NF-κB signaling pathway was more intensively activated by PEDV and BVDV coinfection, which induced higher production of inflammatory cytokines, than PEDV or BVDV monoinfection.Conclusions: Our study indicated that cattle pathogens might play synergistic roles in the pathogenesis of porcine diarrhea disease, which might also improve our understanding of the pathogenesis of multiple infections in diarrhea disease.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6105
Author(s):  
Leticia Szadai ◽  
Erika Velasquez ◽  
Beáta Szeitz ◽  
Natália Pinto de Almeida ◽  
Gilberto Domont ◽  
...  

The discovery of novel protein biomarkers in melanoma is crucial. Our introduction of formalin-fixed paraffin-embedded (FFPE) tumor protocol provides new opportunities to understand the progression of melanoma and open the possibility to screen thousands of FFPE samples deposited in tumor biobanks and available at hospital pathology departments. In our retrospective biobank pilot study, 90 FFPE samples from 77 patients were processed. Protein quantitation was performed by high-resolution mass spectrometry and validated by histopathologic analysis. The global protein expression formed six sample clusters. Proteins such as TRAF6 and ARMC10 were upregulated in clusters with enrichment for shorter survival, and proteins such as AIFI1 were upregulated in clusters with enrichment for longer survival. The cohort’s heterogeneity was addressed by comparing primary and metastasis samples, as well comparing clinical stages. Within immunotherapy and targeted therapy subgroups, the upregulation of the VEGFA-VEGFR2 pathway, RNA splicing, increased activity of immune cells, extracellular matrix, and metabolic pathways were positively associated with patient outcome. To summarize, we were able to (i) link global protein expression profiles to survival, and they proved to be an independent prognostic indicator, as well as (ii) identify proteins that are potential predictors of a patient’s response to immunotherapy and targeted therapy, suggesting new opportunities for precision medicine developments.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3403
Author(s):  
Laura C. Graham ◽  
Rachel A. Kline ◽  
Douglas J. Lamont ◽  
Thomas H. Gillingwater ◽  
Neil A. Mabbott ◽  
...  

Synapses are particularly susceptible to the effects of advancing age, and mitochondria have long been implicated as organelles contributing to this compartmental vulnerability. Despite this, the mitochondrial molecular cascades promoting age-dependent synaptic demise remain to be elucidated. Here, we sought to examine how the synaptic mitochondrial proteome (including strongly mitochondrial associated proteins) was dynamically and temporally regulated throughout ageing to determine whether alterations in the expression of individual candidates can influence synaptic stability/morphology. Proteomic profiling of wild-type mouse cortical synaptic and non-synaptic mitochondria across the lifespan revealed significant age-dependent heterogeneity between mitochondrial subpopulations, with aged organelles exhibiting unique protein expression profiles. Recapitulation of aged synaptic mitochondrial protein expression at the Drosophila neuromuscular junction has the propensity to perturb the synaptic architecture, demonstrating that temporal regulation of the mitochondrial proteome may directly modulate the stability of the synapse in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paola Rebuzzini ◽  
Cinzia Civello ◽  
Lorenzo Fassina ◽  
Maurizio Zuccotti ◽  
Silvia Garagna

AbstractChronic exposure to environmental pollutants threatens human health. Arsenic, a world-wide diffused toxicant, is associated to cardiac pathology in the adult and to congenital heart defects in the foetus. Poorly known are its effects on perinatal cardiomyocytes. Here, bioinformatic image-analysis tools were coupled with cellular and molecular analyses to obtain functional and structural quantitative metrics of the impairment induced by 0.1, 0.5 or 1.0 µM arsenic trioxide exposure on the perinatal-like cardiomyocyte component of mouse embryoid bodies, within their 3D complex cell organization. With this approach, we quantified alterations to the (a) beating activity; (b) sarcomere organization (texture, edge, repetitiveness, height and width of the Z bands); (c) cardiomyocyte size and shape; (d) volume occupied by cardiomyocytes within the EBs. Sarcomere organization and cell morphology impairment are paralleled by differential expression of sarcomeric α-actin and Tropomyosin proteins and of acta2, myh6 and myh7 genes. Also, significant increase of Cx40, Cx43 and Cx45 connexin genes and of Cx43 protein expression profiles is paralleled by large Cx43 immunofluorescence signals. These results provide new insights into the role of arsenic in impairing cytoskeletal components of perinatal-like cardiomyocytes which, in turn, affect cell size, shape and beating capacity.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi121-vi121
Author(s):  
Kacper Walentynowicz ◽  
Dalit Engelhardt ◽  
Shreya Yadav ◽  
Ugoma Onubogu ◽  
Roberto Salatino ◽  
...  

Abstract Heterogeneity of glioblastoma (GBM) has been extensively studied in recent years with identification of oncogenic drivers of GBM cellular subtypes. However, little is known about how these cells interact with each other or with the surrounding tumor microenvironment (TME). We employed spatial protein profiling targeting immune and neuronal markers (79 proteins) coupled with single-cell spatial maps of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA on human GBM tissue sections. Several cores from 20 GBM samples were collected to create a tissue microarray, and 96 regions of interests were profiled with 37,844 nuclei for oncogenic amplification screen. Spatial protein profiling identified strong correlation of certain immune markers, TAU-associated proteins, and oligodendrocyte-enriched protein groups and overall high intratumor heterogeneity of TME. Our single-cell quantification of FISH signals showed differences among tumors based on the prevalence of dual amplification of EGFR and CDK4 within a cell relative to single oncogene amplified cells. High relative frequency of dual amplification was associated with increased expression of immune-related markers and decreased expression of EGFR protein. Moreover, this protein expression signature was associated with survival in another GBM dataset. Here, we present spatial genetic analysis at the single cell level coupled with protein expression profiles associated with tumor microenvironment. Our results suggest that assessment of genetic heterogeneity in GBM could potentially drive improved patient stratification and treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Woo-Jin Lee ◽  
Jangsup Moon ◽  
Jung-Ah Lim ◽  
Daejong Jeon ◽  
Jung-Suk Yoo ◽  
...  

AbstractSeizure clustering is a common phenomenon in epilepsy. Protein expression profiles during a seizure cluster might reflect the pathomechanism underlying ictogenesis. We performed proteomic analyses to identify proteins with a specific temporal expression pattern in cluster phases and to demonstrate their potential pathomechanistic role. Pilocarpine epilepsy model mice with confirmed cluster pattern of spontaneous recurrent seizures by long-term video-electroencpehalography were sacrificed at the onset, peak, or end of a seizure cluster or in the seizure-free period. Proteomic analysis was performed in the hippocampus and the cortex. Differentially expressed proteins (DEPs) were identified and classified according to their temporal expression pattern. Among the five hippocampal (HC)-DEP classes, HC-class 1 (66 DEPs) represented disrupted cell homeostasis due to clustered seizures, HC-class 2 (63 DEPs) cluster-onset downregulated processes, HC-class 3 (42 DEPs) cluster-onset upregulated processes, and HC-class 4 (103 DEPs) consequences of clustered seizures. Especially, DEPs in HC-class 3 were hippocampus-specific and involved in axonogenesis, synaptic vesicle assembly, and neuronal projection, indicating their pathomechanistic roles in ictogenesis. Key proteins in HC-class 3 were highly interconnected and abundantly involved in those biological processes. This study described the seizure cluster-associated spatiotemporal regulation of protein expression. HC-class 3 provides insights regarding ictogenesis-related processes.


2021 ◽  
Vol 11 (21) ◽  
pp. 10151
Author(s):  
Hung-Shih Lin ◽  
Robert Kuo-Kuang Lee ◽  
Tsung-Hsien Yang ◽  
Hsu-Wei Fang ◽  
Sheng-Hsiang Li

Quiescin Q6 sulfhydryl oxidase 1 (QSOX1) catalyzes the oxidation of the sulfhydryl group to disulfide bond and is widely expressed in various tissues. This study focuses on investigating QSOX1′s spatiotemporal and cellular protein expression profile of the pregnant uterus, placenta, and developing embryo during mouse pregnancy. Immunohistochemical staining was used to reveal the localization of QSOX1 protein, and HistoQuest was applied to quantify protein levels. The expression level of QSOX1 in the decidua and muscle cells of the pregnant uterus fluctuated dramatically during pregnancy. QSOX1 was ubiquitously expressed in the labyrinth, junction zone, and chorionic plate in the placenta. The quantitative analysis found that this protein was highly expressed in the spinal cord, lens, midbrain, cerebellum, medulla oblongata, and tooth of mouse embryos, followed by the heart, intercostal muscle, diaphragm, intermediate zone, extrinsic ocular muscle, spine, pons, epidermis, tongue, ganglion, vomeronasal organ, thoracic vertebrae, and thymus. Interestingly, QSOX1 was also markedly expressed in olfactory system tissues. This comprehensive spatiotemporal study of QSOX1 protein expression will provide a basis for further investigations of the QSOX1 physiological function in the pregnant uterus, placenta, and developing embryo.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
María Gordillo-Marañón ◽  
Magdalena Zwierzyna ◽  
Pimphen Charoen ◽  
Fotios Drenos ◽  
Sandesh Chopade ◽  
...  

AbstractDrug target Mendelian randomization (MR) studies use DNA sequence variants in or near a gene encoding a drug target, that alter the target’s expression or function, as a tool to anticipate the effect of drug action on the same target. Here we apply MR to prioritize drug targets for their causal relevance for coronary heart disease (CHD). The targets are further prioritized using independent replication, co-localization, protein expression profiles and data from the British National Formulary and clinicaltrials.gov. Out of the 341 drug targets identified through their association with blood lipids (HDL-C, LDL-C and triglycerides), we robustly prioritize 30 targets that might elicit beneficial effects in the prevention or treatment of CHD, including NPC1L1 and PCSK9, the targets of drugs used in CHD prevention. We discuss how this approach can be generalized to other targets, disease biomarkers and endpoints to help prioritize and validate targets during the drug development process.


Sign in / Sign up

Export Citation Format

Share Document