response to temperature
Recently Published Documents


TOTAL DOCUMENTS

1081
(FIVE YEARS 243)

H-INDEX

59
(FIVE YEARS 10)

Author(s):  
Casey terHorst ◽  
Mary-Alice Coffroth

In many cases, understanding species level responses to climate change requires understanding variation among individuals in response to such change. For species with strong symbiotic relationships, such as many coral reef species, genetic variation in symbiont responses to temperature may affect the response to increased ocean temperatures. To assess variation among symbiont genotypes, we examined the population dynamics and physiological responses of genotypes of Breviolum antillogorgium in response to increased temperature. We found broad temperature tolerance across genotypes, with all genotypes showing positive growth at 26, 30, and 32 C. Genotypes differed in the magnitude of the response of growth rate and carrying capacity to increasing temperature, suggesting that natural selection could favor different genotypes at different temperatures. However, the historical temperature at which genotypes were reared was not a good predictor of temperature response, suggesting a lack of adaptation to temperature over hundreds of generations. We found increased photosynthetic rates and decreased respiration rates with increasing temperature, and differences in physiology among genotypes, but found no significant differences in the response of different genotypes to temperature. In species with such broad thermal tolerance, selection experiments on symbionts outside of the host may not yield results sufficient for evolutionary rescue from climate change.


2022 ◽  
Vol 52 (1) ◽  
Author(s):  
Carla Andréa Delatorre ◽  
Vanessa de Freitas Duarte ◽  
Andriele Wairich ◽  
Guilherme Paim Fraga ◽  
Márcio Pacheco Ribeiro ◽  
...  

ABSTRACT: Temperature affects plant development therefore phyllochron has been used as a predictor for developmental events to define the time for agricultural managing practices. This study aims to evaluate changes in phyllochron and thermal sum required for flowering by oat genotypes developed at different decades at three temperature regimes; the effect of high temperature on phytomere development; and identify the development stage at the moment of meristem transition to reproductive stage. Three environments were obtained by sowing in the fall, in the spring, and under constant temperature (17oC), always at inductive photoperiod. Despite changes in nominal values small differences were found among genotypes’ phyllochron. Adding specific optimal and maximum temperatures into the growing degree days’ calculation demonstrated phyllochron stability among environments. Plant cycle length and thermal sum correlated with the number of developed phytomeres. UFRGS 078030-2 plants flowered earlier, had a small number of phytomeres, and greater tolerance to elevated temperatures than the other genotypes. More recent genotypes transit to reproductive stage at an earlier Haun stage than older ones.


2021 ◽  
Author(s):  
Marshall S McMunn ◽  
Asher I Hudson ◽  
Ash Zemenick ◽  
Monika Egerer ◽  
Stacy M Philpott ◽  
...  

Microorganisms within ectotherms must withstand the variable body temperatures of their hosts. Shifts in host body temperature resulting from climate change have the potential to shape ectotherm microbiome composition. Microbiome compositional changes occurring in response to temperature in nature have not been frequently examined, restricting our ability to predict microbe-mediated ectotherm responses to climate change. In a set of field-based observations, we characterized gut bacterial communities and thermal exposure across a population of desert arboreal ants (Cephalotes rohweri). In a paired growth chamber experiment, we exposed ant colonies to variable temperature regimes differing by 5 C for three months. We found that the abundance and composition of ant-associated bacteria were sensitive to elevated temperatures in both field and laboratory experiments. We observed a subset of taxa that responded similarly to temperature in the experimental and observational study, suggesting a role of seasonal temperature and local temperature differences amongst nests in shaping microbiomes within the ant population. Bacterial mutualists in the genus Cephalotococcus (Opitutales: Opitutaceae) were especially sensitive to change in temperature - decreasing in abundance in naturally warm summer nests and warm growth chambers. We also report the discovery of a member of the Candidate Phlya Radiation (Phylum: Gracilibacteria), a suspected epibiont, found in low abundance within the guts of this ant species.


2021 ◽  
Vol 23 (1) ◽  
pp. 63
Author(s):  
Junyan Xie ◽  
Lihua Wang ◽  
Huiqiong Zheng

Understanding the effects of spaceflight on plant flowering regulation is important to setup a life support system for long-term human space exploration. However, the way in which plant flowering is affected by spaceflight remains unclear. Here, we present results from our latest space experiments on the Chinese spacelab Tiangong-2, in which Arabidopsis wild-type and transgenic plants pFT::GFP germinated and grew as normally as their controls on the ground, but the floral initiation under the long-day condition in space was about 20 days later than their controls on the ground. Time-course series of digital images of pFT::GFP plants showed that the expression rhythm of FT in space did not change, but the peak appeared later in comparison with those of their controls on the ground. Whole-genome microarray analysis revealed that approximately 16% of Arabidopsis genes at the flowering stage changed their transcript levels under spaceflight conditions in comparison with their controls on the ground. The GO terms were enriched in DEGs with up-regulation of the response to temperature, wounding, and protein stabilization and down-regulation of the function in circadian rhythm, gibberellins, and mRNA processes. FT and SOC1 could act as hubs to integrate spaceflight stress signals into the photoperiodic flowering pathway in Arabidopsis in space.


2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Leila Chapron ◽  
Pierre E. Galand ◽  
Audrey M. Pruski ◽  
Erwan Peru ◽  
Gilles Vétion ◽  
...  

Cold-water corals are threatened by global warming, especially in the Mediterranean Sea where they live close to their upper known thermal limit (i.e. 13°C), yet their response to rising temperatures is not well known. Here, temperature effects on Lophelia pertusa and Madrepora oculata holobionts (i.e. the host and its associated microbiome) were investigated. We found that at warmer seawater temperature (+2°C), L. pertusa showed a modification of its microbiome prior to a change in behaviour, leading to lower energy reserves and skeletal growth, whereas M. oculata was more resilient. At extreme temperature (+4°C), both species quickly lost their specific bacterial signature followed by lower physiological activity prior to death. In addition, our results showing the holobionts' negative response to colder temperatures (−3°C), suggest that Mediterranean corals live close to their thermal optimum. The species-specific response to temperature change highlights that global warming may affect dramatically the main deep-sea reef-builders, which would alter the associated biodiversity and related ecosystem services.


2021 ◽  
pp. 119005
Author(s):  
Liu Liu ◽  
Nicolas R. Tanguy ◽  
Ning Yan ◽  
Yiqiang Wu ◽  
Xiubo Liu ◽  
...  

2021 ◽  
Author(s):  
Chalbia Mansour ◽  
Fadia Ben Taheur ◽  
Sondes Mechri ◽  
Bassem Jaouadi ◽  
Ridha Mzoughi ◽  
...  

Author(s):  
P. B. Cerlini ◽  
M. Saraceni ◽  
F. Orlandi ◽  
L. Silvestri ◽  
M. Fornaciari

AbstractEven if the sensitivity of vegetation phenology to climate change has been accepted on global and continental scales, the correlation between global warming and phenotypic variability shows a modulated answer depending on altitude, latitude, and the local seasonal thermal trend. To connect global patterns of change with local effects, we investigated the impact of the observed signal of warming found in Central Italy on two different willow species, Salix acutifolia and Salix smithiana, growing in three phenological gardens of the International Phenological Gardens’ network (IPG) located in different orographic positions. The time series of temperatures and phenological data for the period 2005–2018 were analysed first to find trends over time in the three gardens and then to correlate the recent local warming and the change in the two species phenology. The results confirmed the correlation between phenological trends and local trend of temperatures. In particular: budburst showed a trend of advancement of 1.4 days/year on average in all three gardens; flowering showed a divergent pattern between the gardens of either advancement of 1.0 days/year on average or delay of 1.1 days/year on average; while senescence showed a delay reaching even 3.3 days/year, although significant in only two gardens for both species. These trends were found to be correlated mainly with the temperatures of the months preceding the occurrence of the phase, with a shift in terms of days of the year (DOY) of the two species. Our conclusion is that the observed warming in Central Italy played a key role in controlling the phenophases occurrences of the two willow species, and that the orographic forcing leads to the different shift in DOY of phenophases (from 5 to 20 days) due to the local thermal forcing of the three phenological gardens.


Sign in / Sign up

Export Citation Format

Share Document