wnt signalling
Recently Published Documents


TOTAL DOCUMENTS

947
(FIVE YEARS 191)

H-INDEX

90
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Terry Van Raay ◽  
Victoria Rea ◽  
Ian Bell

Abstract Background : Small molecule metabolites produced by the microbiome are known to be neuroactive and are capable of directly impacting the brain and central nervous system, yet there is little data on the contribution of these metabolites to the earliest stages of neural development and neural gene expression. Here, we explore the impact of deriving zebrafish embryos in the absence of microbes on early neural development as well as investigate whether any potential changes can be rescued with treatment of metabolites derived from the zebrafish gut microbiota. Results : Overall, we did not observe any gross morphological changes between treatments but did observe a significant decrease in neural gene expression in embryos raised germ-free, which was rescued with the addition of zebrafish metabolites. Specifically, we identified 354 genes significantly down regulated in germ-free embryos compared to conventionally raised embryos via RNA-Seq analysis. Of these, 42 were rescued with a single treatment of zebrafish gut-derived metabolites to germ-free embryos. Gene ontology analysis revealed that these genes are involved in prominent neurodevelopmental pathways including transcriptional regulation and Wnt signalling. Consistent with the ontology analysis, we found alterations in the development of Wnt dependent events which was rescued in the germ-free embryos treated with metabolites. Conclusions : These findings demonstrate that gut-derived metabolites are in part responsible for regulating critical signalling pathways in the brain, especially during neural development.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261730
Author(s):  
John M. Haynes ◽  
Shanti M. Sibuea ◽  
Alita A. Aguiar ◽  
Fangwei Li ◽  
Joan K. Ho ◽  
...  

In this study we investigate how β-catenin-dependent WNT signalling impacts midbrain dopaminergic neuron (mDA) specification. mDA cultures at day 65 of differentiation responded to 25 days of the tankyrase inhibitor XAV969 (XAV, 100nM) with reduced expression of markers of an A9 mDA phenotype (KCNJ6, ALDH1A1 and TH) but increased expression of the transcriptional repressors NR0B1 and NR0B2. Overexpression of NR0B1 and or NR0B2 promoted a loss of A9 dopaminergic neuron phenotype markers (KCNJ6, ALDH1A1 and TH). Overexpression of NR0B1, but not NR0B2 promoted a reduction in expression of the β-catenin-dependent WNT signalling pathway activator RSPO2. Analysis of Parkinson’s disease (PD) transcriptomic databases shows a profound PD-associated elevation of NR0B1 as well as reduced transcript for RSPO2. We conclude that reduced β-catenin-dependent WNT signalling impacts dopaminergic neuron identity, in vitro, through increased expression of the transcriptional repressor, NR0B1. We also speculate that dopaminergic neuron regulatory mechanisms may be perturbed in PD and that this may have an impact upon both existing nigral neurons and also neural progenitors transplanted as PD therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongli Liu ◽  
George Sharbeen ◽  
Phoebe Phillips ◽  
Amber L. Johns ◽  
Anthony J. Gill ◽  
...  

Abstract Background The Wnt receptors ROR1 and ROR2 are generating increased interest as cancer therapeutic targets but remain understudied in pancreatic ductal adenocarcinoma (PDAC). Compared to canonical Wnt/ β-catenin signalling, the role of noncanonical Wnt signalling in PDAC remains largely unknown. Only one study has investigated the prognostic significance of the noncanonical Wnt signalling receptor, ROR2 in PDAC. No studies have investigated the prognostic role of ROR1 in PDAC. Methods Here, we performed analysis of ROR1 and ROR2 mRNA expression in three publicly available datasets ICGC-PACA-AU (n = 81), TCGA-PAAD (n = 150) and CPTAC-PDAC (n = 137). ROR1 and ROR2 protein expression from the CPTAC-PDAC discovery cohort were also analysed. Immunohistochemistry (IHC) using the validated anti ROR1 monoclonal antibody (4A5) was performed on the Australian Pancreatic Cancer Genome Initiative (APGI) cohort of PDAC samples (n = 152). Association between ROR1 cytoplasmic staining intensity and clinicopathological parameters including stage, grade and overall survival (OS) was investigated. Results High ROR1 mRNA expression levels correlated with a favourable OS outcome in all of the ICGC-PACA-AU, TCGA-PAAD and CPTAC-PDAC cohorts. ROR1 protein expression was not associated with stage, grade or OS in the APGI cohort. Conclusion ROR1 and ROR2 have potential as prognostic markers when measured at the mRNA level in PDAC. Our IHC cohort did not support ROR1 protein expression in predicting OS, and highlighted the discrepancy of prognostic biomarkers when measured by MS, IHC and RNAseq.


2021 ◽  
Author(s):  
Megan Payne ◽  
Olga Tsaponina ◽  
Gillian Caalim ◽  
Hayley Greenfield ◽  
Leanne Milton-Harris ◽  
...  

Wnt signalling is an evolutionary conserved signal transduction pathway heavily implicated in normal development and disease. The central mediator of this pathway, β-catenin, is frequently overexpressed, mislocalised and overactive in acute myeloid leukaemia (AML) where it mediates the establishment, maintenance and drug resistance of leukaemia stem cells. Critical to the stability, localisation and activity of β-catenin are the protein-protein interactions it forms, yet these are poorly defined in AML. We recently performed the first β-catenin interactome study in blood cells of any kind and identified a plethora of novel interacting partners. This study shows for the first time that β-catenin interacts with Wilms tumour protein (WT1), a protein frequently overexpressed and mutated in AML, in both myeloid cell lines and also primary AML samples. We demonstrate crosstalk between the signalling activity of these two proteins in myeloid cells, and show that modulation of either protein can affect expression of the other. Finally, we demonstrate that WT1 mutations frequently observed in AML can increase stabilise β-catenin and augment Wnt signalling output. This study has uncovered new context-dependent molecular interactions for β-catenin which could inform future therapeutic strategies to target this dysregulated molecule in AML.


2021 ◽  
Author(s):  
Tamer Ali ◽  
Sandra Rogala ◽  
Maria-Theodora Melissari ◽  
Sandra Waehrisch ◽  
Bernhard G Herrmann ◽  
...  

Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via a RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and find that this FendrrBox is partially required for Fendrr function in vivo. We find that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs, associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in fibroblasts. We find that Fendrr with the Wnt signaling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signaling in lung fibrosis.


Author(s):  
Sankari Dantu Sai Shyama Lakshmi ◽  
Maka Sai Sailaja ◽  
Dalal Swetha ◽  
Chanda Chandrasekhar ◽  
Aluru Ranganadha Reddy

Canonical Wnt pathway or β catenin dependent pathway is one of the highly conserved signalling pathway which can control gene expression and regulate cell proliferation, cell adhesion, cell migration, cell polarity and organogenesis. Abnormal regulation of β catenin in the canonical wnt signalling pathway leads to transcription of several genes involved in oncogenic programs. Aberrant signalling of the canonical wnt pathway was observed in several types of cancers including hepatocarcinoma, colorectal cancer and lung cancer. Many small molecules were observed to have the potential to block the aberrant wnt signalling pathway by allosteric binding and inhibiting β catenin molecule. The current study involves screening for ligands which can have strong allosteric binds to β catenin and inhibit wnt signalling pathway. Molecular docking studies were used to evaluate the binding capacity of the selected ligands. Curcumin, Cardamonin, FH535 and ICRT-3 were used as ligands for the molecular docking study with β catenin binding Transcription factor -4 receptor. All chosen ligands have exhibited significant binding energies with the receptor. The highest -9.518272 kcal/mol with Cardamonin followed by -9.28359 kcal/mol with FH535, -8.422604 kcal/mol with curcumin and the least -8.407231 kcal/mol with ICRT-3. All the ligands showed at least 1 hydrogen bond with the target receptor whereas Cardamonin showed 3 hydrogen bonds. Curcumin is a close second forming 2 hydrogen bonds while FH535 and ICRT-3 form only 1 hydrogen bond. The 2D interactions of the ligand and the molecule are visualised by using chimera. We observed Cardamonin to have a very strong binding affinity with the target receptor. Cardamonin can be a suitable drug candidate and might have the potential to inhibit the β catenin dependent wnt signalling pathway.


Author(s):  
Zhaowei Zhang ◽  
Xinyue Pan ◽  
Mingyang Chen ◽  
Mingru Bai
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document