adaptive step
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 125)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei-Fei Li ◽  
Yun Du ◽  
Ke-Jin Jia

AbstractAn algorithm that integrates the improved artificial fish swarm algorithm with continuous segmented Bézier curves is proposed, aiming at the path planning and smoothing of mobile robots. On the one hand, to overcome the low accuracy problems, more inflection points and relatively long planning paths in the traditional artificial fish swarm algorithm for path planning, feasible solutions and a range of step sizes are introduced based on Dijkstra's algorithm. To solve the problems of poor convergence and degradation that hinder the algorithm's ability to find the best in the later stage, a dynamic feedback horizon and an adaptive step size are introduced. On the other hand, to ensure that the planned paths are continuous in both orientation and curvature, the Bessel curve theory is introduced to smooth the planned paths. This is demonstrated through a simulation that shows the improved artificial fish swarm algorithm achieving 100% planning accuracy, while ensuring the shortest average path in the same grid environment. Additionally, the smoothed path is continuous in both orientation and curvature, which satisfies the kinematic characteristics of the mobile robot.


2022 ◽  
Author(s):  
Markus Pfeil ◽  
Thomas Slawig

Abstract. The reduction of the computational effort is desirable for the simulation of marine ecosystem models. Using a marine ecosystem model, the assessment and the validation of annual periodic solutions (i.e., steady annual cycles) against observational data are crucial to identify biogeochemical processes, which, for example, influence the global carbon cycle. For marine ecosystem models, the transport matrix method (TMM) already lowers the runtime of the simulation significantly and enables the application of larger time steps straightforwardly. However, the selection of an appropriate time step is a challenging compromise between accuracy and shortening the runtime. Using an automatic time step adjustment during the computation of a steady annual cycle with the TMM, we present in this paper different algorithms applying either an adaptive step size control or decreasing time steps in order to use the time step always as large as possible without any manual selection. For these methods and a variety of marine ecosystem models of different complexity, the accuracy of the computed steady annual cycle achieved the same accuracy as solutions obtained with a fixed time step. Depending on the complexity of the marine ecosystem model, the application of the methods shortened the runtime significantly. Due to the certain overhead of the adaptive method, the computational effort may be higher in special cases using the adaptive step size control. The presented methods represent computational efficient methods for the simulation of marine ecosystem models using the TMM but without any manual selection of the time step.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3109
Author(s):  
Mostafa Ahmed ◽  
Ibrahim Harbi ◽  
Ralph Kennel ◽  
Mohamed Abdelrahem

Maximum power point tracking (MPPT) is an essential and primary objective in photovoltaic (PV) systems implementation. Thus, in this article, the predictive fixed switching MPPT technique is proposed for a two-stage PV system, where the system under consideration consists of a PV source, boost converter, and two-level inverter. The MPPT design is based on dual adaptive step-size realization to limit the duty cycle oscillations at a steady state. Furthermore, the PI controller is eliminated, which simplifies the MPPT implementation. The suggested tuning procedure of the duty cycle is compared with the conventional adaptive step-size perturb and observe (P&O) method. The inverter is controlled using an efficient finite-set model predictive control (FS-MPC) algorithm with reduced computation burden, where the optimal switching state vector is identified based on the polarity of the reference voltage in the α-β reference frame and without any need for sector determination. Furthermore, the cost function of the FS-MPC algorithm is modified to include the reduction of the switching frequency as a secondary objective for the inverter control. The overall control methodology is evaluated using experimental results at different operating conditions.


2021 ◽  
Author(s):  
Min-Rong Chen ◽  
Liu-Qing Yang ◽  
Guo-Qiang Zeng ◽  
Kang-Di Lu ◽  
Yi-Yuan Huang

Abstract As one of the evolutionary algorithms, firefly algorithm (FA) has been widely used to solve various complex optimization problems. However, FA has significant drawbacks in slow convergence rate and is easily trapped into local optimum. To tackle these defects, this paper proposes an improved FA combined with extremal optimization (EO), named IFA-EO, where three strategies are incorporated. First, to balance the tradeoff between exploration ability and exploitation ability, we adopt a new attraction model for FA operation, which combines the full attraction model and the single attraction model through the probability choice strategy. In the single attraction model, small probability accepts the worse solution to improve the diversity of the offspring. Second, the adaptive step size is proposed based on the number of iterations to dynamically adjust the attention to the exploration model or exploitation model. Third, we combine an EO algorithm with powerful ability in local-search into FA. Experiments are tested on two group popular benchmarks including complex unimodal and multimodal functions. Our experimental results demonstrate that the proposed IFA-EO algorithm can deal with various complex optimization problems and has similar or better performance than the other eight FA variants, three EO-based algorithms, and one advanced differential evolution variant in terms of accuracy and statistical results.


Author(s):  
Alfredo Bonini Neto ◽  
Luis Roberto Almeida Gabriel Filho ◽  
Dilson Amancio Alves

Sign in / Sign up

Export Citation Format

Share Document