dehydrin gene
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandra E. Melgar ◽  
Alicia M. Zelada

AbstractDehydrins (DHNs) are a family of plant proteins that play important roles on abiotic stress tolerance and seed development. They are classified into five structural subgroups: K-, SK-, YK-, YSK-, and KS-DHNs, according to the presence of conserved motifs named K-, Y- and S- segments. We carried out a comparative structural and phylogenetic analysis of these proteins, focusing on the less-studied KS-type DHNs. A search for conserved motifs in DHNs from 56 plant genomes revealed that KS-DHNs possess a unique and highly conserved N-terminal, 15-residue amino acid motif, not previously described. This novel motif, that we named H-segment, is present in DHNs of angiosperms, gymnosperms and lycophytes, suggesting that HKS-DHNs were present in the first vascular plants. Phylogenetic and microsynteny analyses indicate that the five structural subgroups of angiosperm DHNs can be assigned to three groups of orthologue genes, characterized by the presence of the H-, F- or Y- segments. Importantly, the hydrophilin character of DHNs correlate with the phylogenetic origin of the DHNs rather than to the traditional structural subgroups. We propose that angiosperm DHNs can be ultimately subdivided into three orthologous groups, a phylogenetic framework that should help future studies on the evolution and function of this protein family.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 444
Author(s):  
Ryohei Koyama ◽  
Aika Yoshimoto ◽  
Misaki Ishibashi ◽  
Hiromichi Itoh ◽  
Yuichi Uno

Efficient cultivation methods were investigated to promote the branding of products in plant factories. Moderate stress can enhance plant constituents that are beneficial for human health, without reducing yield. Dehydration stress in lettuce rhizospheres increased some antioxidants, including L-ascorbic acid (AsA) and polyphenols. In this study, the major factors contributing to the augmentation of antioxidant constituents were investigated. The drought treatment resulted in increased hydrophilic oxygen radical absorbance capacity (ORAC) values but not hydrophobic ORAC values. Both activities of antioxidant enzymes (superoxide dismutase, SOD, and ascorbate peroxidase, APX) were elevated under drought conditions. RNA-seq analysis revealed 33 upregulated and 115 downregulated differentially expressed genes, and 40 gene ontology enrichment categories. A dehydrin gene was the most significant among the upregulated genes in response to drought stress. Dehydrin protects plant cells from dryness through multiple functions, such as radical scavenging and protection of enzymes. Real-time PCR validated the substantial increase in some dehydrin paralogs with root desiccation. In conclusion, the enhancement of antioxidant levels by drought stress is likely not due to the induction of antioxidant enzyme genes, but due to increased enzymic activities. These activities might be protected by dehydrins encoded by the upregulated paralogs under drought stress.


2021 ◽  
Author(s):  
Alejandra E Melgar ◽  
Alicia M Zelada

Dehydrins (DHNs) are a family of plant proteins that play important roles on abiotic stress tolerance and seed development. They are classified into five structural subgroups: K-, SK-, YK-, YSK-, and KS-DHNs, according to the presence of conserved motifs named K-, Y- and S- segments.We carried out a comparative structural and phylogenetic analysis of these proteins, focusing on the less-studied KS-type DHNs. A search for conserved motifs in DHNs from 56 plant genomes revealed that KS-DHNs possess a unique and highly conserved N-terminal, 15-residue amino acid motif not previously described. This novel motif, that we named H-segment, is present in DHNs of angiosperms, gymnosperms and lycophytes, suggesting that HKS-DHNs were present in the first vascular plants. Phylogenetic and microsynteny analyses indicate that the five structural subgroups of angiosperm DHNs can be assigned to three groups of orthologue genes, characterized by the presence of the H-, F- or Y- segments. Importantly, the hydrophilin character of DHNs correlate with the phylogenetic origin of the DHNs rather than to the traditional structural subgroups. We propose that angiosperm DHNs can be ultimately subdivided into three orthologous groups, a phylogenetic framework that should help future studies on the evolution and function of this protein family.


2021 ◽  
Vol 280 ◽  
pp. 109930
Author(s):  
Jun Zhang ◽  
Hui Xia ◽  
Dong Liang ◽  
Lijin Lin ◽  
Honghong Deng ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Tapan Kumar ◽  
Neha Tiwari ◽  
Chellapilla Bharadwaj ◽  
Ashutosh Sarker ◽  
Sneha Priya Reddy Pappula ◽  
...  

Chickpea (Cicer arietinum L.) is an economically important food legume grown in arid and semi-arid regions of the world. Chickpea is cultivated mainly in the rainfed, residual moisture, and restricted irrigation condition. The crop is always prone to drought stress which is resulting in flower drop, unfilled pods, and is a major yield reducer in many parts of the world. The present study elucidates the association between candidate gene and morpho-physiological traits for the screening of drought tolerance in chickpea. Abiotic stress-responsive gene Dehydrin (DHN) was identified in some of the chickpea genotypes based on the sequence similarity approach to play a major role in drought tolerance. Analysis of variance revealed a significant effect of drought on relative water content, membrane stability index, plant height, and yield traits. The genotypes Pusa1103, Pusa362, and ICC4958 were found most promising genotypes for drought tolerance as they maintained the higher value of osmotic regulations and yield characters. The results were further supported by a sequence similarity approach for the dehydrin gene when analyzed for the presence of single nucleotide polymorphisms (SNPs) and indels. Homozygous indels and single nucleotide polymorphisms were found after the sequencing in some of the selected genotypes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jaroslav Čepl ◽  
Jan Stejskal ◽  
Jiří Korecký ◽  
Jakub Hejtmánek ◽  
Zuzana Faltinová ◽  
...  

AbstractNorway spruce has a broad natural distribution range, which results in a substantial variety of its physiological and genetic variation. There are three distinct altitudinal ecotypes described in this tree species. The physiological optimum of each ecotype may be shifted due to ongoing climate change, especially in traits associated with water demand that might be crucial for adaptation. Dehydrins are proteins that help to mitigate the adverse effects of dehydration. Dehydrin gene expression patterns appeared to be a suitable marker for plant stress assessment. Genetically determined differences in response between individuals and populations were formerly studied, however, mainly in controlled conditions. We evaluated ecotypic variation in dehydrin gene expression in a clonal bank comprised of all three ecotypes. A genetic relationship among targeted trees was uncovered utilizing GBS (Genotyping by Sequencing) platform. We sampled 4–6 trees of each ecotype throughout 15 months period. Subsequently, we assessed the RNA expression of dehydrin genes by qRT-PCR. For this study, we deliberately selected dehydrins from different categories. Our findings detected significant differences among ecotypes in dehydrin expression. The association of recorded climatic variables and individual gene expression across the study period was evaluated and revealed, for certain genes, a correlation between dehydrin gene expression and precipitation, temperature, and day-length.


2020 ◽  
Vol 14 (4) ◽  
pp. 387-395
Author(s):  
Sun-Young Shin ◽  
Hyun-Young Kim ◽  
Il-Sup Kim ◽  
Jin-Ju Kim ◽  
Young- saeng Kim ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 26
Author(s):  
Hua-feng Zhang ◽  
Su-ya Liu ◽  
Ji-hui Ma ◽  
Xin-ke Wang ◽  
Saeed ul Haq ◽  
...  

Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. To authenticate the function of CaDHN4 in cold- and salt-stress responses and abscisic acid (ABA) sensitivity, we reduced the CaDHN4 expression using virus-induced gene silencing (VIGS), and overexpressed the CaDHN4 in Arabidopsis. We found that silencing of CaDHN4 reduced the growth of pepper seedlings and CaDHN4-silenced plants exhibited more serious wilting, higher electrolyte leakage, and more accumulation of ROS in the leaves compared to pTRV2:00 plants after cold stress, and lower chlorophyll contents and higher electrolyte leakage compared to pTRV2:00 plants under salt stress. However, CaDHN4-overexpressing Arabidopsis plants had higher seed germination rates and post-germination primary root growth, compared to WT plants under salt stress. In response to cold and salt stresses, the CaDHN4-overexpressed Arabidopsis exhibited lower MDA content, and lower relative electrolyte leakage compared to the WT plants. Under ABA treatments, the fresh weight and germination rates of transgenic plants were higher than WT plants. The transgenic Arabidopsis expressing a CaDHN4 promoter displayed a more intense GUS staining than the normal growth conditions under treatment with hormones including ABA, methyl jasmonate (MeJA), and salicylic acid (SA). Our results suggest that CaDHN4 can protect against cold and salt stresses and decrease ABA sensitivity in Arabidopsis.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225090 ◽  
Author(s):  
Xinyong Guo ◽  
Li Zhang ◽  
Xiaozhen Wang ◽  
Minhuan Zhang ◽  
Yuxin Xi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document