epicardial cells
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 45)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Paul Palmquist-Gomes ◽  
Adrian Ruiz-Villalba ◽  
Juan Antonio Guadix ◽  
Juan Pablo Romero ◽  
Bettina Bessieres ◽  
...  

Coronary Artery Fistulae (CAFs) are cardiac congenital anomalies consisting of an abnormal communication of a coronary artery with either a cardiac chamber or another cardiac vessel. In humans, these congenital anomalies can lead to complications such as myocardial hypertrophy, endocarditis, heart dilatation and failure. Unfortunately, despite their clinical relevance, the aetiology of CAFs remains unknown. In this work, we have used two different species (mouse and avian embryos) to experimentally model CAFs morphogenesis. Both conditional Itga4 (alpha 4 integrin) epicardial deletion in mice and cryocauterisation of chick embryonic hearts disrupted epicardial development and ventricular wall growth, two essential events in coronary embryogenesis. Additional transcriptomics and in vitro analyses were performed to better understand how arterio-ventricular connections are originated in the embryonic heart. Our results suggest myocardial discontinuities in the developing heart promote the formation of endocardial pouch-like structures resembling human CAF. The structure of these CAF-like anomalies was compared with histopathological data from a paediatric heart CAF, showing histomorphological and immunochemical similarities, including an accumulation of smooth muscle positive cells in the pouch-like structure wall. In vitro experiments showed the abnormal contact between the epicardium and the endocardium may promote the precocious differentiation of epicardial cells to smooth muscle. Our results suggest that myocardial discontinuities in the embryonic ventricular wall promote the early contact of the endocardium with epicardial-derived coronary progenitors at the cardiac surface, leading to ventricular endocardial extrusion, precocious differentiation of coronary smooth muscle cells, and the formation of pouch-like aberrant coronary-like structures in direct connection with the ventricular lumen. Our results may provide relevant information for the early diagnosis of these congenital anomalies and the molecular mechanisms that regulate their embryogenesis.


Author(s):  
Esther Dronkers ◽  
Tessa van Herwaarden ◽  
Thomas J van Brakel ◽  
Gonzalo Sanchez-Duffhues ◽  
Marie-José Goumans ◽  
...  

The epicardium, the mesothelial layer covering the heart, is a crucial cell source for cardiac development and repair. It provides cells and biochemical signals to the heart to facilitate vascularization and myocardial growth. An essential element of epicardial behavior is epicardial epithelial to mesenchymal transition (epiMT), which is the initial step for epicardial cells to become motile and invade the myocardium. To identify targets to optimize epicardium-driven repair of the heart, it is vital to understand which pathways are involved in the regulation of epiMT. Therefore, we established a cell culture model for human primary adult and fetal epiMT, which allows for parallel testing of inhibitors and stimulants of specific pathways. Using this approach, we reveal Activin A and ALK4 signaling as novel regulators of epiMT, independent of the commonly accepted EMT inducer TGFβ. Importantly, Activin A was able to induce epicardial invasion in cultured embryonic mouse hearts. Our results identify Activin A/ALK4 signaling as a modulator of epicardial plasticity which may be exploitable in cardiac regenerative medicine.


2021 ◽  
Author(s):  
Angeliqua Sayed ◽  
Szimonetta Turoczi ◽  
Francisca Soares-da-Silva ◽  
Giovanna Marazzi ◽  
Jean-Sebastien Hulot ◽  
...  

Abstract The epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair in lower vertebrates. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex single cell transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal, and endothelial fates, and that physiological hypoxia promoted an endothelial cell fate. In vitro clonal analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can promote heart revascularization, providing an invaluable in vitro model for further studies.


2021 ◽  
Author(s):  
Irina-Elena Lupu ◽  
Andia Nicole Redpath ◽  
Nicola Smart

The epicardium is a fundamental regulator of cardiac development, functioning to secrete essential growth factors and to produce epicardium-derived cells (EPDCs) that contribute most coronary vascular smooth muscle cells and cardiac fibroblasts. The molecular mechanisms that control epicardial formation and proliferation have not been fully elucidated. In this study, we found that the RNA-binding protein SRSF3 is highly expressed in the proepicardium and later in the epicardial layer during heart development. Deletion of Srsf3 from the murine proepicardium using the Tg(Gata5-Cre) or embryonic day (E) 8.5 induction of Wt1CreERT2 led to proliferative arrest and impaired epithelial-to-mesenchymal transition (EMT), which prevented proper formation and function of the epicardial layer. Induction of Srsf3 deletion with the Wt1CreERT2 after the proepicardial stage resulted in impaired EPDC formation and epicardial proliferation at E13.5. Single-cell RNA-sequencing showed SRSF3-depleted epicardial cells were removed by E15.5 and the remaining non-recombined cells became hyperproliferative and compensated for the loss via up-regulation of Srsf3. This research identifies SRSF3 as a master regulator of cellular proliferation in epicardial cells.


2021 ◽  
Author(s):  
Aaaron H Wasserman ◽  
Yonatan R Lewis-Israeli ◽  
Amanda R Huang ◽  
McKenna D Dooley ◽  
Allison L Mitchell ◽  
...  

Cardiovascular disease (CVD) is one of the leading causes of mortality worldwide, and frequently leads to massive heart injury and the loss of billions of cardiac muscle cells and associated vasculature. Critical work in the last two decades demonstrated that these lost cells can be partially regenerated by the epicardium, the outermost mesothelial layer of the heart, in a process that highly recapitulates its role in heart development. Upon cardiac injury, mature epicardial cells activate and undergo an epithelial-mesenchymal transition (EMT) to form epicardial-derived progenitor cells (EpiPCs), multipotent progenitors that can differentiate into several important cardiac lineages, including cardiomyocytes and vascular cells. In mammals, this process alone is insufficient for significant regeneration, but it may be possible to prime it by administering specific reprogramming factors, leading to enhanced EpiPC function. Here, we show that oxytocin (OXT), a hypothalamic neuroendocrine peptide, induces epicardial cell proliferation, EMT, and migration in a mature-like model of human induced pluripotent stem cell (hiPSC)-derived epicardial cells. In addition, we demonstrate that OXT is released from the brain into the bloodstream after cardiac cryoinjury in zebrafish, eliciting significant epicardial activation and promoting heart regeneration. Oxytocin signaling is also critical for proper epicardium and myocardium development in zebrafish embryos. The above processes are significantly impaired when OXT signaling is inhibited chemically and genetically through RNA interference. Mechanistically, RNA sequencing analyses suggest that the transforming growth factor beta (TGF-β) pathway is the primary mediator of OXT-induced epicardial activation. Our research reveals for the first time a primarily brain-controlled mechanism that induces cellular reprogramming and regeneration of the injured heart, a finding that could yield significant translational advances for the treatment of CVD.


2021 ◽  
Author(s):  
Vincent R Knight-Schrijver ◽  
Hongorzul Davaapil ◽  
Alexander Ross ◽  
Xiaoling He ◽  
Ludovic Vallier ◽  
...  

Epicardial activation appears to be required for cardiac regeneration. Although reverting quiescent adult epicardium to an active neonatal or foetal state will likely represent a key therapeutic approach for human cardiac regeneration, the exact molecular differences between human adult and foetal epicardium are not understood. We used single-cell RNA sequencing to compare epicardial cells from both foetal and adult hearts. We found two foetal epicardial cell types, mesothelial and fibroblast-like, with only the mesothelial population present in adults. We also identified foetal-specific epicardial genes associated with regeneration and angiogenesis, and found that adult epicardium may be primed for immune and inflammatory responses. We predict that restoring the foetal epicardial state in human hearts would increase adult angiogenic potential. Finally, we demonstrated that human embryonic stem-cell derived epicardium is a valid model for the foetal epicardium and for investigating epicardial-mediated cardiac regeneration in humans. Our study defines regenerative programs in human foetal epicardium that are absent in the adult, brings human context to animal studies, and provides a roadmap for directing the epicardium in human heart regeneration.


2021 ◽  
Author(s):  
Jihyun Jang ◽  
Guang Song ◽  
Qinshan Li ◽  
Xiaosu Song ◽  
Chenleng Cai ◽  
...  

AbstractRationalEstablishment of the myocardial wall requires proper growth cues from nonmyocardial tissues. During heart development, the epicardium and epicardium-derived cells (EPDCs) instruct myocardial growth by secreting essential factors including fibroblast growth factor 9 (FGF9) and insulin-like growth factor 2 (IGF2). However, it is poorly understood how the epicardial secreted factors are regulated, in particular by chromatin modifications for myocardial formation.ObjectiveTo understand whether and how histone deacetylase 3 (HDAC3) in the developing epicardium regulates myocardial growth.Methods and ResultsWe deleted Hdac3 in the developing murine epicardium and mutant hearts showed ventricular myocardial wall hypoplasia with reduction of EPDCs. The cultured embryonic cardiomyocytes with supernatants from Hdac3 knockout (KO) mouse epicardial cells (MECs) also showed decreased proliferation. Genome-wide transcriptomic analysis revealed that Fgf9 and Igf2 were significantly down-regulated in Hdac3 KO MECs. We further found that Fgf9 and Igf2 expression is dependent on HDAC3 deacetylase activity. The supplementation of FGF9 or IGF2 can rescue the myocardial proliferation defects treated by Hdac3 KO supernatant. Mechanistically, we identified that microRNA (miR)-322 and miR-503 were upregulated in Hdac3 KO MECs and Hdac3 epicardial KO hearts. Overexpression of miR-322 or miR-503 repressed FGF9 and IGF2 expression, while knockdown of miR-322 or miR-503 restored FGF9 and IGF2 expression in Hdac3 KO MECs.ConclusionsOur findings reveal a critical signaling pathway in which epicardial HDAC3 promotes compact myocardial growth by stimulating FGF9 and IGF2 through repressing miR-322/miR-503, providing novel insights in elucidating etiology of congenital heart defects, and conceptual strategies to promote myocardial regeneration.


2021 ◽  
Author(s):  
Angeliqua Sayed ◽  
Szimonetta Turoczi ◽  
Francisca Soares-da-Silva ◽  
Giovanna Marazzi ◽  
Jean-Sébastien Hulot ◽  
...  

AbstractThe epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair in lower vertebrates. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal, and endothelial fates, and that physiological hypoxia promoted an endothelial cell fate. In vitro analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can promote heart revascularization, providing an invaluable in vitro model for further studies.


Sign in / Sign up

Export Citation Format

Share Document