taxic diversity
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 2)

2021 ◽  
pp. 1-15
Author(s):  
Thomas M. Cullen ◽  
Lindsay Zanno ◽  
Derek W. Larson ◽  
Erinn Todd ◽  
Philip J. Currie ◽  
...  

The Dinosaur Park Formation (DPF) of Alberta, Canada, has produced one of the most diverse dinosaur faunas, with the record favouring large-bodied taxa, in terms of number and completeness of skeletons. Although small theropods are well documented in the assemblage, taxonomic assessments are frequently based on isolated, fragmentary skeletal elements. Here we reassess DPF theropod biodiversity using morphological comparisons, high-resolution biostratigraphy, and morphometric analyses, with a focus on specimens/taxa originally described from isolated material. In addition to clarifying taxic diversity, we test whether DPF theropods preserve faunal zonation/turnover patterns similar to those previously documented for megaherbivores. Frontal bones referred to a therizinosaur (cf. Erlikosaurus), representing among the only skeletal record of the group from the Campanian–Maastrichtian (83–66 Ma) fossil record of North America, plot most closely to troodontids in morphospace, distinct from non-DPF therizinosaurs, a placement supported by a suite of troodontid anatomical frontal characters. Postcranial material referred to cf. Erlikosaurus in North America is also reviewed and found most similar in morphology to caenagnathids, rather than therizinosaurs. Among troodontids, we document considerable morphospace and biostratigraphic overlap between Stenonychosaurus and the recently described Latenivenatrix, as well as a variable distribution of putatively autapomorphic characters, calling the validity of the latter taxon into question. Biostratigraphically, there are no broad-scale patterns of faunal zonation similar to those previously documented in ornithischians from the DPF, with many theropods ranging throughout much of the formation and overlapping extensively, possibly reflecting a lack of sensitivity to environmental changes, or other cryptic ecological or evolutionary factors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lionel Cavin ◽  
André Piuz ◽  
Christophe Ferrante ◽  
Guillaume Guinot

AbstractThe positive correlation between speciation rates and morphological evolution expressed by body size is a macroevolutionary trait of vertebrates. Although taxic diversification and morphological evolution are slow in coelacanths, their fossil record indicates that large and small species coexisted, which calls into question the link between morphological and body size disparities. Here, we describe and reassess fossils of giant coelacanths. Two genera reached up to 5 m long, placing them among the ten largest bony fish that ever lived. The disparity in body size adjusted to taxic diversity is much greater in coelacanths than in ray-finned fishes. Previous studies have shown that rates of speciation and rates of morphological evolution are overall low in this group, and our results indicate that these parameters are decoupled from the disparity in body size in coelacanths. Genomic and physiological characteristics of the extant Latimeria may reflect how the extinct relatives grew to such a large size. These characteristics highlight new evolutionary traits specific to these “living fossils”.


2021 ◽  
Author(s):  
Lionel Cavin ◽  
André Piuz ◽  
Christophe Ferrante ◽  
Guillaume Guinot

Abstract The positive correlation between speciation rates and morphological evolution expressed by body size is a macroevolutionary trait of vertebrates. Although taxic diversification and morphological evolution are slow in coelacanths, their fossil record indicates that large and small species coexisted, which calls into question the link between morphological and body size disparities. Here, we describe and reassess fossils of giant coelacanths. Two genera reached up to 5 meters long, placing them among the ten largest bony fish that ever lived. The disparity in body size adjusted to taxic diversity is much greater in coelacanths than in ray-finned fishes, and is decoupled from a high rate of speciation or a high rate of morphological evolution. Genomic and physiological characteristics of the extant Latimeria may reflect how the extinct relatives grew to such a large size. These characteristics highlight new evolutionary traits specific to these “living fossils”.


Author(s):  
Bernard Wood ◽  
Dandy Doherty ◽  
Eve Boyle

The clade (a.k.a. twig of the Tree of Life) that includes modern humans includes all of the extinct species that are judged, on the basis of their morphology or their genotype, to be more closely related to modern humans than to chimpanzees and bonobos. Taxic diversity with respect to the hominin clade refers to evidence that it included more than one species at any one time period in its evolutionary history. The minimum requirement is that a single ancestor-descendant sequence connects modern humans with the hypothetical common ancestor they share with chimpanzees and bonobos. Does the hominin clade include just modern human ancestors or does it also include non-ancestral species that are closely related to modern humans? It has been suggested there is evidence of taxic diversity within the hominin clade back to 4.5 million years ago, but how sound is that evidence? The main factor that would work to overestimate taxic diversity is the tendency for paleoanthropologists to recognize too many taxa among the site collections of hominin fossils. Factors that would work to systematically underestimate taxic diversity include the relative rarity of hominins within fossil faunas, the realities that many parts of the world where hominins could have been living are un- or under-sampled, and that during many periods of human evolutionary history, erosion rather than deposition predominated, thus reducing or eliminating the chance that animals alive during those times would be recorded in the fossil record. Finally, some of the most distinctive parts of an animal (e.g., pelage, vocal tract, scent glands) are not likely to be preserved in the hominin fossil record, which is dominated by fragments of teeth and jaws.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6615 ◽  
Author(s):  
Robert R. Reisz

The fossil record of caseids, a clade of faunivorous to large herbivorous Permian synapsids, is unusual in having a poorly documented history. Although Kungurian caseids are common in the well-known continental deposits of North America, and the fossil record of the group extends into the middle Permian (Guadalupian), with the presence of the large caseid Ennatosaurus in the Mezen Basin faunal assemblage, only two other occurrences are known in older Permian age sediments. One is an undescribed caseid from the Bromacker Quarry in Germany, and the second is Oromycter from the lower Permian of Richards Spur, Oklahoma. The former is known from several articulated skeletons, but the latter is known only from a handful of skeletal elements, including elements of the snout and lower jaw, some phalanges, and a few vertebrae. Here the fragmentary tooth bearing elements and dorsal vertebrae of another small caseid from Richards Spur are described, with a discussion of its significance in the context of caseid evolution, and the continuously expanding faunal list and taxic diversity at this locality.


Paleobiology ◽  
2018 ◽  
Vol 45 (1) ◽  
pp. 56-69 ◽  
Author(s):  
Marcus Lukic-Walther ◽  
Neil Brocklehurst ◽  
Christian F. Kammerer ◽  
Jörg Fröbisch

AbstractNonmammalian cynodonts represent a speciose and ecologically diverse group with a fossil record stretching from the late Permian until the Cretaceous. Because of their role as major components of Triassic terrestrial ecosystems and as the direct ancestors of mammals, cynodonts are an important group for understanding Mesozoic tetrapod diversity. We examine patterns of nonmammalian cynodont species richness and the quality of their fossil record. A supertree of cynodonts is constructed from recently published trees and time calibrated using a Bayesian approach. While this approach pushes the root of Cynodontia back to the earliest Guadalupian, the origins of Cynognathia and Probainognathia are close to their first appearance in the fossil record. Taxic, subsampled, and phylogenetic diversity estimates support a major cynodont radiation following the end-Permian mass extinction, but conflicting signals are observed at the end of the Triassic. The taxic diversity estimate shows high diversity in the Rhaetian and a drop across the Triassic/Jurassic boundary, while the phylogenetic diversity indicates an earlier extinction between the Norian and Rhaetian. The difference is attributed to the prevalence of taxa based solely on teeth in the Rhaetian, which are not included in the phylogenetic diversity estimate. Examining the completeness of cynodont specimens through geological time does not support a decrease in preservation potential; although the median completeness score decreases in the Late Triassic, the range of values remains consistent. Instead, the poor completeness scores are attributed to a shift in sampling and taxonomic practices: an increased prevalence in microvertebrate sampling and the naming of fragmentary material.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5249
Author(s):  
Marco Romano ◽  
Robert Sansom ◽  
Emma Randle

Ostracoderms (fossil armoured jawless fishes) shed light on early vertebrate evolution by revealing the step-wise acquisition of jawed vertebrate characters, and were important constituents of Middle Palaeozoic vertebrate faunas. A wide variety of head shield shapes are observed within and between the ostracoderm groups, but the timing of these diversifications and the consistency between different measures of their morphospace are unclear. Here, we present the first disparity (explored morphospace) versus diversity (number of taxa) analysis of Pteraspidiformes heterostracans using continuous and discrete characters. Patterns of taxic diversity and morphological disparity are in accordance: they both show a rise to a peak in the Lochkovian followed by a gradual decline in the Middle-Late Devonian. Patterns are largely consistent for disparity measures using sum of ranges or total variance, and when using continuous or discrete characters. Pteraspidiformes heterostracans can be classified as a “bottom-heavy clade”, i.e., a group where a high initial disparity decreasing over time is detected. In fact, the group explored morphospace early in its evolutionary history, with much of the subsequent variation in dermal armour occurring as variation in the proportions of already evolved anatomical features. This Early Devonian radiation is also in agreement with the paleobiogeographic distribution of the group, with a maximum of dispersal and explored morphospace during the Lochkovian and Pragian time bins.


2018 ◽  
Vol 115 (19) ◽  
pp. 4891-4896 ◽  
Author(s):  
Simon J. Maxwell ◽  
Philip J. Hopley ◽  
Paul Upchurch ◽  
Christophe Soligo

The role of climate change in the origin and diversification of early hominins is hotly debated. Most accounts of early hominin evolution link observed fluctuations in species diversity to directional shifts in climate or periods of intense climatic instability. None of these hypotheses, however, have tested whether observed diversity patterns are distorted by variation in the quality of the hominin fossil record. Here, we present a detailed examination of early hominin diversity dynamics, including both taxic and phylogenetically corrected diversity estimates. Unlike past studies, we compare these estimates to sampling metrics for rock availability (hominin-, primate-, and mammal-bearing formations) and collection effort, to assess the geological and anthropogenic controls on the sampling of the early hominin fossil record. Taxic diversity, primate-bearing formations, and collection effort show strong positive correlations, demonstrating that observed patterns of early hominin taxic diversity can be explained by temporal heterogeneity in fossil sampling rather than genuine evolutionary processes. Peak taxic diversity at 1.9 million years ago (Ma) is a sampling artifact, reflecting merely maximal rock availability and collection effort. In contrast, phylogenetic diversity estimates imply peak diversity at 2.4 Ma and show little relation to sampling metrics. We find that apparent relationships between early hominin diversity and indicators of climatic instability are, in fact, driven largely by variation in suitable rock exposure and collection effort. Our results suggest that significant improvements in the quality of the fossil record are required before the role of climate in hominin evolution can be reliably determined.


2016 ◽  
Vol 159 ◽  
pp. 37-78 ◽  
Author(s):  
Bernard Wood ◽  
Eve K. Boyle
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document